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Decision making Under 
Uncertainty and Stochastic 

Programs 
 

If you come to a fork in the road, take it. 

-Y. Berra 

 

12.1 Introduction 
A big reason multiperiod planning is difficult is because of uncertainty about the future. For example, 

next year, if the demand for your new product proves to be large and the cost of raw material increases 

markedly, then buying a lot of raw material today would win you a lot of respect next year as a wise 

and perceptive manager. On the other hand, if the market disappears for both your product and your 

raw material, the company stockholders would probably not be so kind as to call your purchase of lots 

of raw material bad luck.  

We apply the term stochastic program or scenario planning (SP) to any optimization problems (linear, 

nonlinear or mixed-integer) in which some of the model parameters are not known with certainty, and 

the uncertainty can be expressed with known probability distributions.  Applications arise in a variety 

of industries:   

 Financial portfolio planning over multiple periods for insurance and other financial 

companies, in face of uncertain prices, interest rates, and exchange rates, 

 Exploration planning for petroleum companies, 

 Fuel purchasing when facing uncertain future fuel demand, 

 Fleet assignment: vehicle type to route assignment in face of uncertain route demand, 

 Electricity generator unit commitment in face of uncertain demand, 

 Hydro management and flood control in face of uncertain rainfall, 

 Optimal time to exercise for options in face of uncertain prices,     

 Capacity and Production planning in face of uncertain future demands and prices, 

 Foundry metal blending in face of uncertain input scrap qualities, 

 Product planning in face of future technology uncertainty, 

 Revenue management in the hospitality and transport industries. 
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12.1.1 Identifying Sources of Uncertainty 
In a discussion with the author, the chief financial officer of a large petroleum company made the 

comment: “The trouble with you academics is that you assume the probabilities add up to one. In the 

real world, they do not. You may think the possible outcomes are: ‘hit oil’, ‘hit gas’, or ‘dry hole’. In 

reality, the drilling rig catches fire and causes a major disaster.” The point of the comment is that an 

important part of managing uncertainty is identifying as many sources of uncertainty as possible. The 

following is a typical list with which to start: 

1. Weather related: 

 decisions about how much and where to stockpile supplies of fuel and road salt in 

preparation for the winter; 

 water release decisions in the spring for a river and dam system, taking into account 

hydroelectric, navigation, and flooding considerations. 

2. Financial uncertainty: 

 market price movements (e.g., stock price, interest rate, and foreign exchange rate 

movements); 

 defaults by business partner (e.g., bankruptcy of a major customer). 

3. Political events: 

 changes of government; 

 outbreaks of hostilities. 

4. Technology related: 

 whether a new technology is useable by the time the next version of a product is 

scheduled to be released. 

5. Market related: 

 shifts or fads in tastes; 

 population shifts. 

6. Competition: 

 incomplete knowledge of the kinds of strategies used by the competition next year.  

7. Acts of God: 

 hurricane, tornado, earthquake, or fire;  

 equipment failure. 

 In an analysis of a decision under uncertainty, we would proceed through a list such as the above 

and identify those items that might interact with our decision. Weather, in particular, can be a big 

source of uncertainty. Hidroeléctrica Española, for example (see Dembo et al. (1990)), reports 

available power output per year from one of its hydroelectric facilities varied from 8,350 Gwh 

(Giga-watt-hours) to 2,100 Gwh over a three-year period simply because of rainfall variation. 

 Methods very similar to those described here have been used in the automotive industry to make 

plant opening and closing decisions in the face of uncertainty about future demand. These methods 

have also been used in the utilities industry to make fuel purchase decisions in the face of uncertainties 

about weather in the next few years. 
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12.2 The Scenario Planning (SP)Approach 
We will start by considering planning problems with two periods. These situations consist of the 

following sequence of events: 

1) We make a first-period decision. 

2) Nature (frequently known as the marketplace) makes a random decision. 

3) We make a second-period decision that attempts to repair the havoc wrought by nature in 

(2). 

 The scenario approach assumes there are a finite number of decisions nature can make. We call 

each of these possible states of nature a “scenario”. For example, in practice, most people are satisfied 

with classifying demand for a product as being low, medium, or high; or classifying a winter as being 

severe, normal, or mild, rather than requiring a statement of the average daily temperature and total 

snowfall measured to six decimal places. General Motors has historically used low, medium, and high 

scenarios to represent demand uncertainty. The type of model we will describe for representing 

uncertainty in the context of LPs is called a “stochastic program”. For a survey of applications and 

methodology, see Birge (1997). For an extensive introduction to stochastic programming ideas, see 

Kall and Wallace (1994). For a good discussion of some of the issues in applying stochastic 

programming to financial decisions, see Infanger (1994). 

12.2.1 Formulation and Structure of an SP Problem 
In decisionmaking under uncertainty, it is important to take into account the sequence in which 

information becomes available and we make decisions. We use the term stage to described the 

sequence pair [ 1)new information becomes available, 2) we make a decision].  Usually, one can think 

of a stage as a ‘time period’, however there are situations where a stage may consist of several time 

periods. A stage: a) begins with one or more random events, e.g., some demands occur, and b) ends 

with our making one or more decisions, e.g., sell some excess product or order some more product. 

Multistage decision making under uncertainty involves making optimal decisions for a T-stage horizon 

before uncertain events (random parameters) are revealed while trying to protect against unfavorable 

outcomes that could be observed in the future.  

In its most general form, a multistage decision process with T+1 stages follows an alternating sequence 

of random events and decisions.  Slightly more explicitly: 

0.1) in stage 0,  we make some initial decision, e.g., how much to order,  taking 

into account that… 

 

1.0) at the beginning of stage 1,  “Nature” takes a set of random decisions, e.g., 

how much customers want to buy, leading to realizations of all random events in 

stage 1, and… 

 

1.1) at the end of stage 1, having seen nature’s decision, as well as our previous 

decision, we make a recourse decision, e.g., sell off excess product or order even 

more, taking into account that … 

 

2.0)  at the beginning of stage 2, “Nature” takes a set of random decisions, leading 

to realizations of all random events in stage-2, and… 
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2.1) at the end of stage 2, having seen nature’s decision, as well as our previous 

decisions, we make another recourse decision taking into account that … 

  . 

  . 

  . 

T.0) At the beginning of stage T,  “Nature” takes a random decision, leading to 

realizations of all random events in stage T, and… 

 

T.1) at the end of stage T, having seen all of nature’s T previous decisions, as well 

as all our previous decisions, we make the final recourse decision.  
 

The decision taken in stage 0 is called the initial decision, whereas decisions taken 

in succeeding stages are sometimes called recourse decisions. Recourse decisions 

are interpreted as corrective actions that are based on the actual values the random 

parameters realized so far, as well as the past decisions taken thus far. 
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The essential steps in formulating an SP in LINGO are: 

   1) Write a standard deterministic model (the core model) as if  

        the random variables are variables or parameters.  

   2) Identify the random variables, and decision variables, 

         and their staging.  This is done using the:  

             WBSP_VAR(stage, cell_list) function for decisions variables, and 

             WBSP_RAND(stage, cell_list) function for random variables. 

    3) Provide the distributions describing the random variables. Distribution specification is stored in    

             WBSP_DIST_distn(table, cell_list) function, where distn specifies the distribution,  

        e.g., NORMAL.    

   4) Specify manner of sampling from the distributions,  (mainly the sample size).  

        This information is provided via the  

             WBSP_STSC(table); 

   5) List the variables for which we want a scenario by scenario report or a histogram: 

             WBSP_REP(cell_list)  for scenario list of values, or 

              WBSP_HIST(bins, cell) for histograms. 

 

12.3 Single Stage Decisions Under Uncertainty 
The simplest problems of decision making under uncertainty involve the case where there is but a 

single stage with randomness. 

12.3.1 The News Vendor Problem 

The simplest problem of decision making under uncertainty is the News Vendor problem, i.e., we must 

decide how much to stock in anticipation of demand, before knowing exactly what the demand will be.  

Below we see how the Newsvendor problem is set up as a LINGO model. 

MODEL:                  !(SP_NBsimpleL.lg4); 

 ! Newsvendor problem as a stochastic program in LINGO. 

   How much should we stock, Q,   

   in anticipation of uncertain DEMAND?  

  Parameters: 

    10 = cost/unit purchased and stocked, 

    15 = revenue/unit sold; 

 

! Step 1: Core model definition--------------------------------+; 

   [R_OBJ] MAX = PROFIT; 
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   ! (Expected) Profit =  

       sales - purchase cost; 

   PROFIT = 15 * SALES - 10 * Q; 

   @FREE( PROFIT);  ! Allow negative PROFIT because 

                     might have a loss in some scenarios; 

 

   ! Set excess inventory or shortage ; 

   EXCESS - SHORT = Q - DEMAND;  

   SALES = DEMAND - SHORT;   

 

! SP related declarations --------------------------------------+; 

! Step 2: staging info; 

   @SPSTGVAR( 0, Q); ! Amount to purchase, Q, is a stage 0 decision; 

   @SPSTGRNDV( 1, DEMAND); ! Demand is a random variable observed 

                              in stage 1, at the beginning; 

 

! Step 3: Distribution info; 

   @SPDISTPOIS( 60, DEMAND); ! Demand has a Poisson distribution;  

  ! @SPDISTNORM( 60, 12, DEMAND); ! Demand has Normal distribution;  

 

! Step 4: Sampling structure; 

   @SPSAMPSIZE( 1, 200);  ! Specify the stage 1 sample size; 

END 

 

Part of the solution report is shown below. 

 
  Global optimal solution found. 

  Objective value:                              257.8500 

  Infeasibilities:                              0.000000 

  Total solver iterations:                           134 

  Elapsed runtime seconds:                          0.49 

 

  Expected value of: 

     Objective (EV):                             257.8500 

     Wait-and-see model's objective (WS):        299.8000 

     Perfect information (EVPI = |EV - WS|):     41.95000 

     Policy based on mean outcome (EM):          253.5880 

     Modeling uncertainty (EVMU = |EM - EV|):    4.262000 

 

 

  Stage 0 Solution 

  ---------------- 

          Variable        Value 

                 Q     57.00000 

 

  Staging Report 

  -------------- 

   Random Variable        Stage 

            DEMAND        1 

 

          Variable        Stage 

            PROFIT   1* 

             SALES   1* 
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                 Q   0 

            EXCESS   1* 

             SHORT   1* 

 

      (*) Stage was inferred 

 

  Random Variable Distribution Report 

  ----------------------------------- 

                                   Sample        Sample 

  Random Variable          Mean    StdDev      Distribution 

           DEMAND      59.96000    7.740052      POISSON,60 

 

  Scenario: 1   Probability: 0.5000000E-02   Objective: -45.00000 

  --------------------------------------------------------------- 

  Random Variable         Value 

           DEMAND      35.00000 

 

         Variable         Value 

           PROFIT     -45.00000 

            SALES      35.00000 

                Q      57.00000 

           EXCESS      22.00000 

            SHORT      0.000000 

           

 

  Scenario: 2   Probability: 0.5000000E-02   Objective: 285.0000 

  -------------------------------------------------------------- 

  Random Variable         Value 

           DEMAND      66.00000 

 

         Variable         Value 

           PROFIT      285.0000 

            SALES      57.00000 

                Q      57.00000 

           EXCESS      0.000000 

            SHORT      9.000000 

                  .  .  . 
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12.3.2 Multi-product Inventory with Repositioning 
This is example is a very simplified illustration of an inventory management approach used by some 

apparel retailers. The general sequence of events is: 

    Stage 0) Before the selling season starts 

                 the retailer commits inventory to a number of locations and/or  products. 

    Stage 1, beginning) Demands at the various locations or products are observed. 

    Stage 1, end) Product can be repositioned to some extent, at some additional cost, among the various  

                 locations/products, generally moving inventory to the locations/products with higher than  

                 expected demand. 

   This is a very crude simplified representation of an inventory allocation system with reallocation 

used at the clothing retailers Sport Obermeyer, see Fisher and Raman(1996) and at the Spanish firm 

Zara, see Caro and Gallien (2010). Our example below is closer to that of Sport Obermeyer, where the 

secondary reallocation is over products, whereas at Zara, the reallocation is over locations. In the 

example below, in stage 0 we need to decide what initial quantities should be produced to inventory of 

three types of parkas, the “Anita”, “Daphne”, and “Electra”.  After this initial production run, we 

observe the demands for the three parkas. Once we see the demands, we have access to a fast backup 

production facility of limited capacity that can produce any of the three products. Although this backup 

facility is fast, it is also very expensive per unit produced, and it has limited capacity, so if we had 

perfectly accurate forecasts, we would not use the backup facility.  We would produce just the right 

amount of each product from the outset.  In the real world where perfect forecasts are the exception, 

the main question is: How much should we produce of each product initially, taking into account that 

we can use the somewhat expensive backup facility to partially compensate for our forecast errors. 

    In the previous example, we sampled from a standard distribution, e.g., the Poisson. In this example, 

we illustrate using a table of demand scenarios. There are four possible scenarios with associated 

probabilities. 

 
! Capacity Planning with Re-positioning Under Uncertainty (SP_Cap_Plan_Gen); 

!  Stage 0: We decide what inventories or capacities  

           to place at various origins. 

   Stage 1 beginning: Demands at various demand points observed. 

   Stage 1       end: We satisfy demands from available quantities 

                     (by solving a transportation problem.); 

SETS: 

 ORIGIN: CPERU, ULCAP, Q; 

 DESTN: DEMAND; 

 OXD( ORIGIN, DESTN): PROFC, X; 

 SCENE: PROB; 

 SXD( SCENE, DESTN): RDEM; 

ENDSETS 

DATA: 

! These data are based very loosely on the Sport Obermeyer apparel 

problem studied by Fisher and Raman, Operations Research, vol. 44, no. 1; 

 ORIGIN = OANITA, ODAPHNE, OELECTRA, OGENRIC; ! Sources of production; 

  CPERU =     80       90        65        5; ! Cost per unit to commit; 

  ULCAP =   9999     9999      9999      150; ! Upper limit on production; 

 DESTN = DANITA, DDAPHNE, DELECTRA; ! Demand points; 

 PROFC = 180      0        0     ! Incremental profit from satisfying a ; 

           0    160        0     ! particular demand point from a ; 

           0      0      140     ! particular supply point; 
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          90     50,      60;    ! Generic is a quick response source; 

 ! E.g., OANITA can satisfy only DANITA, ODAPHNE only DDAPHNE, etc., 

         OGENERIC can satisfy any demand but is not as profitable and 

         has limited capacity; 

 PROB = 0.2 0.3 0.4 0.1;  ! Probabilities of various scenarios; 

 RDEM = 300 400 400       ! The demand scenarios; 

        320 370 433 

        333 383 460 

        500 320 610; 

ENDDATA 

! Decision variables: 

   Q(i) = amount of initial inventory or capacity we put at or in 

          source i before seeing demand. 

   X(i,j) = amount we reposition from source i to destinantion j 

          after seeing demand. Some destinations may also be sources; 

 

! 1) Define core model; 

  !   Maximize revenue from sales minus cost of producing inventory; 

    MAX = @SUM( OXD(i,j): PROFC(i,j)*X(i,j))  

        - @SUM( ORIGIN(i): CPERU(i)* Q(i)); 

 

  ! Cannot install/produce more than upper limit; 

   @FOR( ORIGIN(i): 

      Q(i) <= ULCAP(i); 

       ); 

  ! Cannot sell more than we stock; 

   @FOR( ORIGIN(i): 

     @SUM( DESTN(j): X(i,j)) <= Q(i); 

        ); 

  ! Cannot sell more than demand; 

   @FOR( DESTN(j): 

     @SUM( ORIGIN(i): X(i,j)) <= DEMAND(j);  

       ); 

 

 ! 2) Specify staging of decisions. Click on 

         Edit | Paste function | Stochastic Programming 

      to see choices and syntax; 

   @FOR( ORIGIN(i):  

      @SPSTGVAR( 0, Q(i)); ! The Q's are a stage 0 decision; 

        ); 

   ! ... and demands (stage 1); 

   @FOR( DESTN(j): 

      @SPSTGRNDV( 1, DEMAND(j));  ! Demands observed in stage 1 beginning; 

       ); 

 

  ! 3) Specify distribution of demands. 

      Demand scenarios come from a table;  

      @SPDISTTABLE( RDEM, DEMAND, PROB); 

 

  ! 4) Number of scenarios; 

       @SPSAMPSIZE( 1, 10); 

 

A portion of the solution report appears below. Notice that all of the available generic capacity is committed. 
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  Global optimal solution found. 

  Objective value:                              90207.00 

 

  Stage 0 Solution 

  ---------------- 

 

              Variable           Value 

            Q( OANITA)        320.0000 

           Q( ODAPHNE)        370.0000 

          Q( OELECTRA)        433.0000 

           Q( OGENRIC)        150.0000 

 

  Scenario: 1   Probability: 0.1000000   Objective: 82905.00 

  ---------------------------------------------------------- 

 

       Random Variable           Value 

       DEMAND( DANITA)        300.0000 

      DEMAND( DDAPHNE)        400.0000 

     DEMAND( DELECTRA)        400.0000 

 

              Variable           Value 

  X( OGENRIC, DDAPHNE)        30.00000 

 

  Scenario: 2   Probability: 0.1000000   Objective: 93065.00 

  ---------------------------------------------------------- 

 

         Random Variable           Value 

         DEMAND( DANITA)        333.0000 

        DEMAND( DDAPHNE)        383.0000 

       DEMAND( DELECTRA)        460.0000 

 

                Variable           Value 

     X( OGENRIC, DANITA)        13.00000 

    X( OGENRIC, DDAPHNE)        13.00000 

   X( OGENRIC, DELECTRA)        27.00000 

 

  Scenario: 3   Probability: 0.1000000   Objective: 89625.00 

  ---------------------------------------------------------- 

 

         Random Variable           Value 

         DEMAND( DANITA)        320.0000 

        DEMAND( DDAPHNE)        370.0000 

       DEMAND( DELECTRA)        433.0000 

 

                Variable           Value 

 

 

  Scenario: 4   Probability: 0.1000000   Objective: 93065.00 

  ---------------------------------------------------------- 

 

         Random Variable           Value 

         DEMAND( DANITA)        333.0000 
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        DEMAND( DDAPHNE)        383.0000 

       DEMAND( DELECTRA)        460.0000 

 

                Variable           Value 

     X( OGENRIC, DANITA)        13.00000 

    X( OGENRIC, DDAPHNE)        13.00000 

   X( OGENRIC, DELECTRA)        27.00000 

 

 

  Scenario: 8   Probability: 0.1000000   Objective: 95125.00 

  ---------------------------------------------------------- 

 

         Random Variable           Value 

         DEMAND( DANITA)        500.0000 

        DEMAND( DDAPHNE)        320.0000 

       DEMAND( DELECTRA)        610.0000 

 

                Variable           Value 

     X( OGENRIC, DANITA)        150.0000 

 

 

12.4 Multi-Stage Decisions Under Uncertainty 
    Our examples thus far have been at most two stages. In stage 0, we make a decision, and then in 

stage 1 at the beginning there is one occurrence of a random event, and then finally we make one 

recourse decision. A slightly more complicated class of problems is the set of problems in which there 

are two or more separate random stages, with an intervening set of decisions. Perhaps the simplest 

multi-stage problems of decision making under risk are “stopping “ problems, examined next. 
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12.4.1 Stopping Rule and Option to Exercise Problems 
    Some sequential decision problems are of the form: a) Each period we have to make an accept or 

reject decision; b) once we accept, the “game is over”. We then have to live with that decision. Our 

next example is the simplest example of a problem known variously as a stopping problem, the college 

acceptance problem, the secretary problem, or the dating game. The general situation is as follows. 

Each period we are offered an object of known quality.  We have a choice of either a) accept the object 

and end the game, or b) reject the object and continue in the hope that a better object will become 

available in a future period. The problem is nontrivial because we do not know the qualities in 

advance. The following illustrates. Each period we will see either a 2, a 7, or a 10, where 10 is the best 

possible, and 2 is the worst. It is clear that once we see a 10, we might as well accept.  We can never 

do better.  If we see a 2, we should never accept unless it is the last period. Whether we should accept 

or reject a 7 in intermediate periods is at the moment a puzzle,  depending upon the probabilities of the 

various outcomes. There are four periods, i.e., we have 4 chances. The completely deterministic “core”  

model is quite simple, namely: 

      Maximize v1*y1 + v2*y2 + v3*y3+ v4*y4; 

          subject to: 

                       y1 + y2 + y3+ y4 ≤ 1; 

                         yj = 0 or 1, for j = 1, 2, 3, 4; 

 

The complication is that we do not know the vj in advance. In particular, we must choose the value for 

yj immediately after seeing vj, without knowing the future vj ‘s. If we follow the simple rule of 

accepting the first candidate, i.e., setting = 1, then the expected value of the objective function is 

(2+7+10)/3 = 6.3333.  To check our understanding, we might ask ourselves several questions. How 

much better than 6.3333 can we do by being more thoughtful?  What will the optimal policy look like?  

We can deduce certain features of it, such as: 1) If we see a 10, then accept it immediately. We can do 

no better; 2) If we see a 2, reject it, except if it is the last period, then accept. The big question is what 

to do when we see a 7 in any period before the last. The model formulated in LINGO appears below. 

! The  Dating Game      (SP_DatinGame) 

    

  We interview one prospect per stage or period. 

 The quality of a prospect is a random variable.    

       

 After interviewing a prospect we must make an Accept or Reject decision. 

          

 Once we Accept, the game is over. 

 We want to maximize the expected quality of the accepted prospect; 

 

SETS: 

  PERIOD: QUALITY, Y, SAMP_SZ; 

  QPOSS: QOFP; 

ENDSETS 

 

DATA: 

  PERIOD =  P1 P2 P3 P4; ! The view and accept/reject periods); 

  SAMP_SZ=   3  3  3  3; ! Sample size for each period; 

  QOFP = 2  7  10;  ! Possible qualities of prospects; 
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ENDDATA 

 

! 1) Core Model -------------------------------------------+; 

 ! Y(p) = 1 if we accept the prospect we see in stage p; 

! Maximize the quality of the accepted prospect; 

   MAX = @SUM( PERIOD(p): QUALITY(p)*Y(p)); 

 

! We can accept only once; 

   @SUM( PERIOD( P): Y( P)) <= 1; 

 

! We either accept or reject, no halfsies; 

   @FOR( PERIOD(p): @BIN( Y(p)) ); 

 

!LS*** These redundant constraints are added just to make the solver happy; 

  @SPSTGVAR( 0, Y0); ! In case LINGO wants a decision variable in stage 0; 

   Y0 + Y(1) <= 1; 

   Y0 + Y(2) <= 1; 

   Y0 + Y(3) <= 1; 

 

! SP Related Declarations -----------------------------+; 

!  2) Staging information; 

!   QUALITY is a random variable; 

@FOR( PERIOD( p):  

   @SPSTGRNDV( p, QUALITY( p)); 

! The decision variables;  

   @SPSTGVAR( p, Y( p)); 

    ); 

 

! 3) Declare a table distribution; 

@FOR( PERIOD( P) : 

   ! Quality is chosen randomly from table QOFP; 

   @SPDISTTABLE( QOFP, QUALITY( p)); 

    ); 

 

 ! 4) Declare sample size for each stage/period; 

@FOR( PERIOD( P): 

   ! Set the sample size for the stage; 

   @SPSAMPSIZE( P, SAMP_SZ( P)); 

    ); 

 

 

When solved, we see that the expected objective value is 9.012346, quite a bit better than the 5.333333 

we would get by taking the first offer.   

 

With regard to the policy, in particular, what to do when we are offered a “7”, we can look Scenario 51  

below.  

  Global optimal solution found. 

  Objective value:                              9.012346 

 

  Scenario: 61   Probability: 0.1234568E-01   Objective: 7.000000 
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  --------------------------------------------------------------- 

 

         Random Variable           Value 

            QUALITY( P1)        7.000000 

            QUALITY( P2)        7.000000 

            QUALITY( P3)        7.000000 

            QUALITY( P4)        10.00000 

 

                Variable           Value 

                Y( P3)        1.000000 
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Notice from the highlighted row, for the given probabilities,  if we see a 7 in stage 1 or 2, we do not 

accept (0) it, however, when we see a 7 in stage 3, whe accept (1). 

 

12.4.2. An Option Exercise Stopping Problem  
In financial markets it is frequently possible to buy options to buy or sell some financial instrument at 

an agreed upon “strike” price. This is a type of stopping problem. Once we have exercised the option, 

the game is over. The option exercise problem differs from our previous stopping problem example 

only in the manner in which the random variables, in this case the price of the financial instrument, is 

determined. In this particular example we will have five periods/stages/decision points, so the core 

model is similar to before: 

          Maximize v1y1 + v2y2 + v3y3+ v3y3 +v5y5; 

          subject to: 

                       y1 + y2 + y3+ y4 + y5 ≤ 1; 

                         yj = 0 or 1, for j = 1, 2, 3, 4, 5; 

The difference is the manner in which the vj are determined. In this particular example, we assume that 

with equal probability the financial instrument, say a stock, changes each period by either 1) increasing 

by 6%, or 2) increases, by 1%, or 3) decreases by 4%.  Further, we have to pay for the option up front, 

however, if and when we exercise the option, we get paid ( difference between the strike price minus 

the then current price) only later at the point of exercise.  Therefore, we want to discount the future 

cash inflow back to the point in time that we purchase the option.  Figure 5.8 shows the setup in 

What’sBest!. 

When solved, from the WB! Status tab, we see that the expected value of the objective is 1.669324.  

This means, that we would be we  be willing to pay up to about 1.67 for this option. One of the 

attractive features of using stochastic programming is that you get to see the distribution of the profit. 

If we look on the WB!_Histogram tab, we see the histogram in Figure 5.9. The interesting message 

from this histogram is that even though the expected profit contribution from exercising the option is 

about 1.67, we should expect a profit contribution of zero about 70% of the time.  

With regard the policy of when to sell, recall that the strike price was 99, so we would never sell if the 

price > 99.  From looking at the WB_Stochastic tab in Figure 5.10, we see that the policy is: 

                       Sell at Strike Price  

               Stage    if Market Price ≤ 

                  1        never 

                  2        92.16 

                  3        93.08 

                  4        94.01 

                  5        99. 
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12.5 Expected Value of Perfect Information (EVPI) 
Uncertainty has its costs. Therefore, it may be worthwhile to invest in research to reduce the 

uncertainty. This investment might be in better weather forecasts for problems like the one just 

considered or it might be in test markets or market surveys for problems relating to new product 

investment. A bound on the value of better forecasts is obtainable by considering the possibility of 

getting perfect forecasts, so-called perfect information. 

 We have sufficient information on the snow removal problem to calculate the value of perfect 

information. For example, if we knew beforehand the winter would be warm, then we saw from the 

solution of the warm winter model the total cost would be $583,333.3. On the other hand, if we knew 

beforehand that the winter would be cold, we saw the total cost would be $970,000. Having perfect 

forecasts will not change the frequency of warm and cold winters. They will presumably still occur 

with respective probabilities 0.4 and 0.6. Thus, if we had perfect forecasts, the expected cost per 

season would be: 

0.4  583,333.3 + 0.6  970,000 = 815,333.3 

 From the solution of the complete model, we see the expected cost per season without any 

additional information is $819,888.3. Thus, the expected value of perfect information is 

819,888.3  815,333.3 = $4,555.0. Therefore, if a well-dressed weather forecaster claims prior 

knowledge of the severity of the coming winter, then an offer of at most $4,555 should be made to 

learn his forecast. We say the expected value of perfect information in this case is $4,555. In reality, 

his forecast is probably worth considerably less because it is probably not a perfect forecast. 

12.6 Expected Value of Modeling Uncertainty 
Suppose the EVPI is high. Does this mean it is important to use stochastic programming, or the 

scenario approach? Definitely not. Even though the EVPI may be high, it may be a very simple 

deterministic model does just as well (e.g., recommends the same decision as a sophisticated stochastic 

model). The Expected Value of Modeling Uncertainty (EVMU) measures the additional profit possible 

by using a “correct” stochastic model. EVMU is always measured relative to some simpler 

deterministic model. 

12.6.1 Certainty Equivalence 
An interesting question is: are there some situations in which we know in advance EVMU = 0?. A 

roughly equivalent question is: “Under what conditions can we replace a random variable in a model by 

its expected value without changing the action recommended by the model?” If we can justify such a 

replacement, then we have a priori determined that the EVMU is zero for that random variable. The 

following gives a sufficient condition: 

Certainty Equivalence Theorem: If the randomness or unpredictability in problem 

data exists solely in the objective function coefficients of a linear objective function, 
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then it is correct to solve the LP in regular form after simply using the expected 

values for the random coefficients in the objective. 

 If the randomness exists in a right-hand side or a constraint coefficient, then it is not correct 

simply to replace the random element by its average or expected value. We can be slightly more 

precise if we define: 

X  = the set of decision variables, 

Yi  = some random variable in the model, 

Y
_

i = all other random variables in the model, except Yi, 

Y
~

i = all other random variables that are independent of Yi. 

 We are justified in replacing Yi by its expected value, E(Yi), if Yi appears only in the objective 

function, and each term containing Yi either: 

is not a function of X, or 

is linear in Yi and contains no random variables dependent upon Yi. 

Equivalently, we must be able to write the objective as: 

Min F1(X, Y
_

i) + F2(X, Y
~

i) * Yi + F3( Y
_

i,Yi). 

If we take expected values: 

E[F1(X,Yi) + F2(X, Y
~

i) * Yi + F3( Y
_

i,Yi)] 

= E[F1(X, Y
_

i)] + E[F2(X, Y
~

I)] * E(Yi) + E[F3( Y
_

i,Yi)]. 

The third term is a constant with respect to the decision variables, so it can be dropped. 

 Thus, any X that minimizes E[F1(X Y
_

i) + F2(X, Y
~

i) * Yi] also minimizes: 

E[F1(X, Y
_

i) + F2(X, Y
~

i) * E(Yi)]. 

 As an example, consider a farmer who must decide how much corn, beans, and milo to plant in the 

face of random yields and random prices for the crops. Further, suppose the farmer receives a 

government subsidy that is a complicated function of current crop prices and the farmer’s total land 

holdings, but not a function of current yield or planting decisions. Suppose the price for corn at harvest 

time is independent of the yield. The farmer’s income can be written (income from beans and milo) + 

(acreage devoted to corn)  (corn yield)  (price of corn) + (subsidy based on prices). 

 The third term is independent of this year’s decision, so it can be disregarded. In the middle term, 

the random variable, “price of corn”, can be replaced by its expected value because it is independent of 

the two other components of the middle term. 

12.7 Risk Aversion 
Thus far, we have assumed the decision maker is strictly an expected profit maximizer and is neither 

risk averse nor risk preferring. Casino gamblers who play games such as roulette must be risk 

preferring if the roulette wheel is not defective, because their expected profits are negative. A person is 
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risk averse if he or she attaches more weight to a large loss than expected profits maximization would 

dictate. 

 In the context of the snow removal problem, the Streets Manager might be embarrassed by a high 

cost of snow removal in a cold winter even though long run expected cost minimization would imply 

an occasional big loss. From the optimal policy for the snow removal problem, we can see the sum of 

first-period plus second-period costs if the winter is cold is: 

70*BF1 + 20*BS1 + KC = 977591. 

 On the other hand, if it is known beforehand the winter will be cold, then we have seen this cost 

can be reduced to $970,000. 

 For fear of attracting the attention of a political opponent, the Streets Manager might wish to 

prevent the possibility of a cost more than $5,000 greater than the minimum possible for the cold 

winter outcome. 

 The Manager can incorporate his risk aversion into the LP by adding the constraint: 

70 * BF1 + 20 * BS1 + KC  975000. 

When this is done, the solution is: 

Optimal solution found at step:        11 

Objective value:                 820061.1 

Variable           Value        Reduced Cost 

     BF1        3780.556           0.0000000 

     BS1        2916.667           0.0000000 

      KW        264680.6           0.0000000 

      KC        652027.8           0.0000000 

     BFW       0.0000000            3.200000 

     XFW        863.8889           0.0000000 

      PW       0.0000000            4.611115 

      SW        2916.667           0.0000000 

     BSW       0.0000000            3.533334 

     XSW       0.0000000            8.466666 

     BFC        1027.778           0.0000000 

     XFC       0.0000000            5.333333 

      PC        1891.667           0.0000000 

      SC        2916.667           0.0000000 

     BSC       0.0000000            8.466667 

     XSC       0.0000000            2.866666 

 The expected cost has increased by about 820,061  819,888 = 173 dollars. A politician might 

consider this a price worth paying to reduce his worst case (cold winter) cost almost $2,600. Notice, 

however, performance in the event of a warm winter does not look as good. The value of XFW 

indicates there will be almost 864 units of fuel to be disposed of at the end of a warm winter. 

12.7.1 Downside Risk 
There is a variety of ways of measuring risk. Variance is probably the most common measure of risk. 

The variance measure gives equal weight to deviations above the mean as well as below. For a 

symmetric distribution, this is fine, but for nonsymmetrical distributions, this is not attractive. Most 

people worry a lot more about returns that are below average than ones above average. 



Decision Making Under Uncert. & Stoch. Programs Chapter 12     361 

 Downside risk is a reasonably intuitive way of quantifying risk that looks only at returns lower 

than some threshold. In words, downside risk is the expected amount by which return falls short of a 

specified target. To explain it more carefully, define: 

 Ps  = probability that scenario s occurs 

 T  = a target return threshold that we specify 

 Rs  = the return achieved if scenario s occurs 

 Ds  = the down side if scenario s occurs 

      =  max {0, T  Rs} 

ER  = expected downside risk 

       = p1D1 + p2D2 + ... 

12.7.2 Example 
Suppose the farmer of our earlier acquaintance has made two changes in his assessment of things: (a) 

he assesses the probability of a wet season as 0.7 and (b) he has eliminated beans as a possible crop, so 

he has only two choices (corn and sorghum). A reformulation of his model is: 

MAX = 0.7 * RW + 0.3 * RD; 

RW - 100 * C - 70 * S = 0; 

RD + 10 * C - 40 * S = 0; 

C + S = 1; 

@FREE(RW); 

@FREE(RD); 

 The variables RW and RD are the return (i.e., profit) if the season is wet or dry, respectively. 

Notice both RW and RD were declared as FREE, because RD in particular could be negative. 

 When solved, the recommendation is to plant 100% corn with a resulting expected profit of 67: 

Optimal solution found at step:         0 

Objective value:                 67.00000 

Variable           Value        Reduced Cost 

      RW        100.0000           0.0000000 

      RD       -10.00000           0.0000000 

       C        1.000000           0.0000000 

       S       0.0000000            6.000000 

     Row    Slack or Surplus      Dual Price 

       1        67.00000            1.000000 

       2       0.0000000           0.7000000 

       3       0.0000000           0.3000000 

       4       0.0000000            67.00000 

 The solution makes it explicit that, if the season is dry, our profits (RD) will be negative. Let us 

compute the expected downside risk for a solution to this problem. We must choose a target threshold. 

A plausible value for this target is one such that the most conservative decision available to us just 

barely has an expected downside risk of zero. For our farmer, the most conservative decision is 

sorghum. A target value of 40 would give sorghum a downside risk of zero. To compute the expected 

downside risk for our problem, we want to add the following constraints: 

DW > 40  RW 

DD > 40  RD 
ER = .7 DW + .3 DD 
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The constraint DW > 40  RW effectively sets DW = max (0, 40  RW). 

 When converted to standard form and appended to our model, we get: 

MAX = 0.7 * RW + 0.3 * RD; 

RW - 100 * C - 70 * S = 0; 

RD + 10 * C - 40 * S = 0; 

C + S = 1; 

RW + DW > 40; 

RD + DD > 40; 

- 0.7 * DW - 0.3 * DD + ER = 0; 

@FREE(ER); 

@FREE(RW); 

@FREE(RD); 

The solution is: 

Optimal solution found at step:         2 

Objective value:                 67.00000 

Variable           Value        Reduced Cost 

      RW        100.0000           0.0000000 

      RD       -10.00000           0.0000000 

       C        1.000000           0.0000000 

       S       0.0000000            6.000000 

      DW       0.0000000           0.0000000 

      DD        50.00000           0.0000000 

      ER        15.00000           0.0000000 

     Row    Slack or Surplus      Dual Price 

       1        67.00000            1.000000 

       2       0.0000000           0.7000000 

       3       0.0000000           0.3000000 

       4       0.0000000            67.00000 

       5        60.00000           0.0000000 

       6       0.0000000           0.0000000 

       7       0.0000000           0.0000000 

 Because we put no constraint on expected downside risk, we get the same solution as before, but 

with the additional information that the expected downside risk is 15. 

 What happens as we become more risk averse? Suppose we add the constraint ER < 10. We then 

get the solution: 

Optimal solution found at step:         2 

Objective value:                 65.00000 

Variable           Value        Reduced Cost 

      RW        90.00000           0.0000000 

      RD        6.666667           0.0000000 

       C       0.6666667           0.0000000 

       S       0.3333333           0.0000000 

      DW       0.0000000           0.2800000 

      DD        33.33333           0.0000000 

      ER        10.00000           0.0000000 
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 Notice the recommendation is now to put 1/3 of the land into sorghum. The profit drops modestly 

to 65 from 67. If the season is dry, the profit is now 6.67 rather than 10 as before. Finally, let’s 

constrain the expected downside risk to zero with ER < 0. Then the solution is: 

Optimal solution found at step:         2 

Objective value:                 61.00000 

Variable           Value        Reduced Cost 

      RW        70.00000           0.0000000 

      RD        40.00000           0.0000000 

       C       0.0000000           0.0000000 

       S        1.000000           0.0000000 

      DW       0.0000000           0.2800000 

      DD       0.0000000           0.0000000 

      ER       0.0000000           0.0000000 

     Row    Slack or Surplus      Dual Price 

       1        61.00000            1.000000 

       2       0.0000000           0.7000000 

       3       0.0000000           0.4200000 

       4       0.0000000            65.80000 

       5        30.00000           0.0000000 

       6       0.0000000          -0.1200000 

       7       0.0000000          -0.4000000 

       8       0.0000000           0.4000000 

Now, all the land is planted with sorghum and expected profit drops to 61. 
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12.8 Dynamic Programming and Financial Option Models 
The term dynamic programming is frequently applied to the solution method described above. We 

illustrate it with three examples in the area of financial options. One in the stock market, one in the 

bond market, and the third in foreign exchange. A stock option is a right to buy a specified stock at a 

specified price (the so-called strike price) either on a specified date (a so-called European option) or 

over a specified interval of time (a so-called American option). An interesting problem in finance is 

the determination of the proper price for such an option. This problem was “solved” by Black and 

Scholes (1973). Below is a LINGO implementation of the “binomial pricing” version of the 

Black/Scholes model: 

MODEL: 

SETS:                             !(OPTONB); 

! Binomial option pricing model: We assume that 

a stock can either go up in value from one period 

to the next with probability PUP, or down with 

probability (1 - PUP). Under this assumption, 

a stock's return will be binomially distributed. 

  We can then build a 

dynamic programming recursion to 

determine the option's value; 

! No. of periods, e.g., weeks; 

   PERIOD /1..20/:; 

ENDSETS 

DATA: 

! Current price of the stock; 

   PNOW   = 40.75; 

! Exercise price at option expiration; 

   STRIKE = 40; 

! Yearly interest rate; 

   IRATE  = .163; 

! Weekly variance in log of price; 

   WVAR   = .005216191 ; 

ENDDATA 

SETS: 

!Generate our state matrix for the DP.STATE(S,T) may 

be entered from STATE(S,T-1)if the stock lost value, 

or it may be entered from STATE(S-1,T-1) if stock 

 gained; 

   STATE( PERIOD, PERIOD)| &1 #LE# &2: 

      PRICE,   ! There is a stock price, and   ; 

      VAL;     ! a value of the option; 

ENDSETS 

! Compute number of periods; 

   LASTP = @SIZE( PERIOD); 

! Get the weekly interest rate; 

   ( 1 + WRATE) ^ 52 = ( 1 + IRATE); 

! The weekly discount factor; 

   DISF = 1/( 1 + WRATE); 

! Use the fact that if LOG( P) is normal with 

  mean LOGM and variance WVAR, then P has 

  mean EXP( LOGM + WVAR/2), solving for LOGM...; 

   LOGM = @LOG( 1 + WRATE) - WVAR/ 2; 
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! Get the log of the up factor; 

   LUPF = ( LOGM * LOGM + WVAR) ^ .5; 

! The actual up move factor; 

   UPF = @EXP( LUPF); 

! and the down move factor; 

   DNF = 1/ UPF; 

! Probability of an up move; 

   PUP =  .5 * ( 1 + LOGM/ LUPF); 

! Initialize the price table; 

   PRICE( 1, 1) = PNOW; 

! First the states where it goes down every period; 

   @FOR( PERIOD( T) | T #GT# 1: 

      PRICE( 1, T) = PRICE( 1, T - 1) * DNF); 

! Now compute for all other states S, period T; 

   @FOR( STATE( S, T)| T #GT# 1 #AND# S #GT# 1: 

      PRICE( S, T) = PRICE( S - 1, T - 1) * UPF); 

! Set values in the final period; 

    @FOR( PERIOD( S): 

    VAL( S, LASTP)= @SMAX( PRICE( S, LASTP) - STRIKE,0) 

         ); 

! Do the dynamic programming; 

   @FOR( STATE( S, T) | T #LT# LASTP: 

      VAL( S, T) = @SMAX( PRICE( S, T) - STRIKE, 

             DISF * ( PUP * VAL( S + 1, T + 1) + 

               ( 1 - PUP) * VAL( S, T + 1)))); 

! Finally, the value of the option now; 

 VALUE = VAL( 1, 1); 

END 

 The @SMAX function in the dynamic programming section corresponds to the decision in period 

T to either exercise the option and make an immediate profit of PRICE( S, T) – STRIKE, or wait (at least) 

until next period. If we wait until next period, the price can go up with probability PUP or down with 

probability 1- PUP. In either case, to convert next period’s value to this period’s value, we must 

multiply by the discount factor, DISF. The interesting part of the solution to this model gives: 

Variable             Value 

   VALUE          6.549348 

 The actual price of this option in the Wall Street Journal when there were 19 weeks until 

expiration was $6.625. So, it looks like this option is not a good buy if we are confident in our input 

data. 

12.8.1 Binomial Tree Models of Interest Rates 
Financial options based on interest rates are becoming widely available, just as options on stock prices 

have become widely available. In order to evaluate an interest rate option properly, we need a model of 

the random behavior of interest rates. 

 Interest rates behave differently than stock prices. Most notably, interest rates tend to hover in a 

finite interval (e.g., 2% to 20% per year); whereas, stock prices continue to increase year after year. 

Not surprisingly, a different model must be used to model interest rates. One of the simpler, yet 

realistic, methods for evaluating interest rate based options was developed by Black, Derman, and Toy 

(1990). Heath, Jarrow, and Morton (1992) present another popular model of interest rate movements.  
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 The Black/Derman/Toy (BDT) model tries to fit two sets of data: a) the yield curve for bonds, and b) 

the volatility in the yield to maturity (YTM) for bonds. For a T period problem, the random variable of 

interest is the forward interest rate in each period 1, 2, …, T. For period 1, the forward rate is known. For 

periods t = 2, 3, …, T, the BDT model chooses t forward rates, so these rates are consistent with: a) the 

YTM curve, and b) the observed volatility in YTM. The BDT model assumes the probability of an 

increase in the interest rate in a period = probability of a decrease = .5. The possible rates in a period for 

the BDT model are determined by two numbers: a) a base rate, which can be thought of as chosen to 

match the mean YTM, and b) a rate ratio chosen to match the volatility in the YTM. Specifically, the BDT 

model assumes ri+1,t / ri,t = ri,t / ri-1,t for the ith forward rate in period t. Thus, if r1,t and r2,t are specified in 

period t, then all the other rates for period t are determined. 

 Below is a LINGO implementation of the BDT model: 

MODEL: 

SETS: 

! Black/Derman/Toy binomial interest rate model(BDTCALB); 

! Calibrate it to a given yield curve and volatilities; 

 PORM/1..5/:   ! (INPUTS:)For each maturity; 

   YTM,   ! Yield To Maturity of Zero Coupon Bond; 

   VOL;   ! Volatility of Yield To Maturity of ZCB; 

 STATE( PORM, PORM)| &1 #GE# &2: 

   FSRATE; ! (OUTPUT:)Future short rate in period j, state k; 

ENDSETS 

DATA: 

 YTM = .08, .0812, .0816, .0818, .0814; 

 VOL =   0, .1651, .1658, .1688, .1686; 

! Write the forward rates to a file; 

 @TEXT( 'forwrdr.dat') = FSRATE; 

ENDDATA 

!-------------------------------------------------; 

SETS: 

 TWO/1..2/:; 

 VYTM( PORM, TWO): YTM2; ! Period 2 YTM's; 

 MXS( PORM, PORM, PORM)|&1#GE# &2 #AND# &2 #GE# &3: 

   PRICE; ! Price of a ZCB of maturity i, in period j,  state k; 

ENDSETS 

! Short rate ratios must be constant   

      (Note: C/B=B/A <=> C=BB/A); 

 @FOR( STATE( J, K)| K #GT# 2: 

   FSRATE( J, K) = 

FSRATE( J, K -1) * FSRATE( J, K-1)/ FSRATE( J, K-2); 

    @FREE( FSRATE( J, K)); 

    ); 

! Compute prices for each maturity in each period and state; 

@FOR( MXS( I, J, K)| J #EQ# I: 

    @FREE( PRICE( I, I, K)); 

    PRICE( I, I, K) = 1/( 1 + FSRATE( I, K)); ); 

@FOR( MXS( I, J, K) | J #LT# I: 

    @FREE( PRICE( I, J, K)); 

    PRICE( I, J, K) = .5 * ( PRICE(I, J + 1, K) + PRICE(I, J + 1, K + 

1))/( 1 + FSRATE( J, K)); 

    ); 
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!For each maturity, price in period 1 must be consistent with its 

YTM; 

@FOR( PORM( I): 

  PRICE( I, 1, 1)*( 1 + YTM( I))^I = 1; 

  ); 

 ! Compute period 2 YTM's for each maturity; 

@FOR( VYTM( I, K)| I #GT# 1: 

  YTM2( I, K) = (1/ PRICE( I, 2, K)^(1/( I-1))) - 1; 

   ); 

  ! Match the volatilities for each maturity; 

@FOR( PORM( I)| I #GT# 1: 

  .5 * @LOG( YTM2( I, 2)/ YTM2( I, 1)) = VOL( I); 

    ); 

END 

When solved, we get the following forward interest rates: 

     Variable           Value 

FSRATE( 1, 1)       0.8000000E-01 

FSRATE( 2, 1)       0.6906015E-01 

FSRATE( 2, 2)       0.9607968E-01 

FSRATE( 3, 1)       0.5777419E-01 

FSRATE( 3, 2)       0.8065491E-01 

FSRATE( 3, 3)       0.1125973 

FSRATE( 4, 1)       0.4706528E-01 

FSRATE( 4, 2)       0.6690677E-01 

FSRATE( 4, 3)       0.9511292E-01 

FSRATE( 4, 4)       0.1352100 

FSRATE( 5, 1)       0.3900926E-01 

FSRATE( 5, 2)       0.5481167E-01 

FSRATE( 5, 3)       0.7701470E-01 

FSRATE( 5, 4)       0.1082116 

FSRATE( 5, 5)       0.1520465 

We can display these forward rates in a more intuitive tree form: 

                       Period     

   1          2           3         4           5   

                                             0.1520482 

                                  0.1352100  0.1082116 

                       0.1125973  0.0951129  0.0770147 

            0.0960797  0.0806549  0.0669068  0.0548117 

 0.0800000  0.0690602  0.0577742  0.0470653  0.0390093 

 Thus, the BDT model implies that, at the start of period 1, the interest rate is .08. At the start of 

period 2 (end of period 1), the interest rate will be with equal probability, either .0690602 or .0960797, 

etc. 
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 Now, let us suppose we want to compute the value of an interest rate cap of 10% in period 5. That 

is, we would like to buy insurance against the interest rate being greater than .10 in period 5. We see 

there are two possible interest rates, .1520482 and .1082116, that would cause the insurance to “kick 

in”. Assuming interest is paid at the end of each period, it should be clear such a cap is worth either 0, 

.0082116, or .0520482 at the end of period 5. We can calculate the expected value in earlier periods 

with the following dynamic programming value tree: 

                       Period     

   1          2           3         4           5   

                                              .0520482 

                                  .026294     .008212 

                        .013273   .003705      0 

            .006747     .001692     0          0 

 .003440    .000783      0          0          0 

 These values apply to the end of each year. At the beginning of the first year, we would be willing 

to pay .003440/ 1.08 = .003189 per dollar of principal for this cap on interest rate at the end of year 

five. The following LINGO model will read in the FSRATE data computed by the previous model and 

compute the above table of values. Note the FSRATE’s need be computed only once. It can then be 

used to evaluate or price various CAP’s, or caplets as they are sometimes known: 

MODEL: 

SETS: 

! Black/Derman/Toy binomial interest rate model.  

 Compute value of a cap.(BDTCMP); 

 PORM/1..5/:  ; 

 STATE( PORM, PORM)| &1 #GE# &2: 

 FSRATE, 

 !(OUTPUT:)Future short rate in period j,state k; 

 VALUE;  !  Value of the option in this state; 

ENDSETS 

DATA: 

  CAP = .10; 

  FSRATE = @TEXT( forwrdr.dat); 

ENDDATA 

!-------------------------------------------------; 

 LASTP = @SIZE( PORM); 

 @FOR( PORM( K): 

VALUE(LASTP, K) = @SMAX(0, FSRATE(LASTP, K) - CAP); 

  ); 

 @FOR( STATE( J, K) | J #LT# LASTP: 

   VALUE( J, K) = 

.5 * (VALUE(J + 1, K + 1)/(1 + FSRATE(J + 1, K + 1)) 

      + VALUE( J + 1, K)/(1 + FSRATE( J + 1, K))); 

     ); 

!  The value at the beginning of period 1; 

  VALUE0 = VALUE( 1, 1)/( 1 + FSRATE( 1, 1)); 

END 
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12.8.2 Binomial Tree Models of Foreign Exchange Rates 
DeRosa (1992) describes a simple binomial tree model of foreign exchange rates. The following 

LINGO model illustrates the valuation of an option on the German Mark when there were 36 days 

until its expiration. This model illustrates the case of an American style option. That is, the option may 

be exercised any time before its expiration. It is a simple matter to simplify the model to the case of a 

European style option, which can be exercised only at maturity. 

MODEL: 

SETS:      !(OPTONFX); 

! Binomial option pricing model on foreign exchange: 

 What is the value in $ of an option to buy one unit 

 Of a foreign currency at specified/strike exchange  

 rate?  The binomial model assumes the exchange rate 

  can either go up from one period to the next by a  

  fixed factor,  or down by another fixed factor; 

! No. of discrete periods to use, including time now 

  ( 6 means 5 future periods); 

   PERIOD /1..6/:; 

ENDSETS 

DATA: 

! Current exchange rate, $ per foreign unit; 

   XCURR = .5893; 

! Strike exchange rate, i.e., right to exchange 

   $1 for one foreign unit at this rate; 

   XSTRK =.58; 

! Yearly interest rate in $ country; 

   IRD = .0581; 

! Yearly interest rate in foreign country; 

   IRF = .0881; 

! Years to maturity for the option; 

   MATRT = .098630137; !( = 36/365); 

! Yearly variance in exchange rate; 

   SIG = .13; 

ENDDATA 

!--------------------------------------------------; 

SETS: 

!Generate state matrix for the DP. STATE( S, T) may 

be entered from STATE(S, T-1) if FX rate went down, 

or from STATE( S - 1, T - 1) if FX rate went up; 

 STATE( PERIOD, PERIOD)| &1 #LE# &2: 

         FXRATE,  ! There is an FX rate, and...; 

         VAL;     ! a value of the option; 

ENDSETS 

! Compute number of periods; 

   LASTP = @SIZE( PERIOD); 

! Initialize the FXRATE table; 

   FXRATE( 1, 1) = XCURR; 

! Compute some constants; 

!   To avoid warning messages when IRDIFM < 0; 

   @FREE( IRDIFM); 

   IRDIFM = ( IRD - IRF) * MATRT/( LASTP - 1); 

   SIGMSR = SIG * (( MATRT/( LASTP - 1))^.5); 

   DISF = @EXP( - IRD * MATRT/( LASTP - 1)); 
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! The up factor; 

   UPF = @EXP( IRDIFM + SIGMSR); 

! The down factor; 

   DNF = @EXP( IRDIFM - SIGMSR); 

! Probability of an up move( assumes SIG > 0); 

   PUP =  (@EXP( IRDIFM)- DNF)/( UPF - DNF); 

   PDN = 1 - PUP; 

! First the states where it goes down every period; 

   @FOR( PERIOD( T) | T #GT# 1: 

      FXRATE( 1, T) = FXRATE( 1, T - 1) * DNF); 

! Now compute for all other states S, period T; 

   @FOR( STATE( S, T)| T #GT# 1 #AND# S #GT# 1: 

      FXRATE( S, T) = FXRATE( S - 1, T - 1) * UPF); 

! Do the dynamic programming; 

! Set values in the final period; 

   @FOR( PERIOD( S): 

     VAL( S, LASTP) =  

             @SMAX( FXRATE( S, LASTP) - XSTRK, 0)); 

! and for the earlier periods; 

   @FOR( STATE( S, T) | T #LT# LASTP: 

      VAL( S, T) = @SMAX( FXRATE( S, T) - XSTRK, 

                DISF * ( PUP * VAL( S + 1, T + 1) + 

                           PDN * VAL( S, T + 1)))); 

! Finally, the value of the option now; 

 VALUE = VAL( 1, 1); 

END 

It is of interest to look at all of the states computed by the model: 

     Variable           Value 

        XCURR       0.5893000 

        XSTRK       0.5800000 

          IRD       0.5810000E-01 

          IRF       0.8810000E-01 

        MATRT       0.9863014E-01 

          SIG       0.1300000 

        LASTP        6.000000 

       IRDIFM      -0.5917808E-03 

       SIGMSR       0.1825842E-01 

         DISF       0.9988546 

          UPF        1.017824 

          DNF       0.9813264 

          PUP       0.4954355 

          PDN       0.5045645 

        VALUE       0.1393443E-01 

FXRATE( 1, 1)       0.5893000 

FXRATE( 1, 2)       0.5782956 

FXRATE( 1, 3)       0.5674967 

FXRATE( 1, 4)       0.5568995 

FXRATE( 1, 5)       0.5465002 

FXRATE( 1, 6)       0.5362950 

FXRATE( 2, 2)       0.5998035 

FXRATE( 2, 3)       0.5886029 

FXRATE( 2, 4)       0.5776116 
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FXRATE( 2, 5)       0.5668255 

FXRATE( 2, 6)       0.5562408 

FXRATE( 3, 3)       0.6104941 

FXRATE( 3, 4)       0.5990940 

FXRATE( 3, 5)       0.5879067 

FXRATE( 3, 6)       0.5769283 

FXRATE( 4, 4)       0.6213753 

FXRATE( 4, 5)       0.6097720 

FXRATE( 4, 6)       0.5983853 

FXRATE( 5, 5)       0.6324505 

FXRATE( 5, 6)       0.6206403 

FXRATE( 6, 6)       0.6437230 

   VAL( 1, 1)       0.1393443E-01 

   VAL( 1, 2)       0.6976915E-02 

   VAL( 1, 3)       0.2228125E-02 

   VAL( 1, 4)       0.0000000 

   VAL( 1, 5)       0.0000000 

   VAL( 1, 6)       0.0000000 

   VAL( 2, 2)       0.2105240E-01 

   VAL( 2, 3)       0.1182936E-01 

   VAL( 2, 4)       0.4502463E-02 

   VAL( 2, 5)       0.0000000 

   VAL( 2, 6)       0.0000000 

   VAL( 3, 3)       0.3049412E-01 

   VAL( 3, 4)       0.1931863E-01 

   VAL( 3, 5)       0.9098311E-02 

   VAL( 3, 6)       0.0000000 

   VAL( 4, 4)       0.4137534E-01 

   VAL( 4, 5)       0.2977199E-01 

   VAL( 4, 6)       0.1838533E-01 

   VAL( 5, 5)       0.5245049E-01 

   VAL( 5, 6)       0.4064034E-01 

   VAL( 6, 6)       0.6372305E-01 

 Thus, the value of this option is VAL (1, 1) = $0.01393443. For example, the option to buy 100 

Marks for $58 any time during the next 36 days is worth $1.393443. The actual option on which the 

above was based had a price of $1.368 per 100 Marks. The actual option also happened to be a 

European style option, rather than American. An American option can be exercised at any point during 

its life. A European option can be exercised only at its maturity. Thus, it is not surprising the above 

model should attribute a higher value to the option. 

12.9 Decisions Under Uncertainty with an Infinite Number of 
Periods 

We can consider the case of an infinite number of periods if we have a system where: 

a) we can represent the state of the system as one of a finite number of possible states, 

b) we can represent our possible actions as a finite set, 

c) given that we find the system in state s and take action x in a period, nature moves the 

system to state j the next period with probability p( x, j), 

d) a cost c(s,x) is incurred when we take action x from state s. 
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 Such a system is called a Markov decision process and is, in fact, quite general. Our goal is to find 

the best action to take for each state to minimize the average cost per period. Puterman (1994) provides 

an excellent introduction to applications of Markov Decision Processes, as well as a thorough 

presentation of the theory. Manne (1960) showed how to formulate the problem of determining the 

best action for each state as a linear program. He defined: 

w(s,x) = probability that in the steady state the state is s and we take action x.  

 This implicitly allows for randomized policies. That is, the decision maker could flip a coin to 

determine his decision. It turns out, however, that there is always an optimal policy that is 

deterministic. Allowing randomized policies is simply a convenient computational approach. 

 Manne’s LP is then: 

min = 
s, x
c(s, x) w( s, x) 

subject to: 

s, x
 w(s, x) = 1, 

For each state s: 

 x
w(s, x) = 

r, x
w(r, x) p( x, s). 

 Notice the probability of going to state s depends only upon the action taken, x. Some descriptions 

of Markov Decision Processes give an apparently more general definition of the state transition 

process by letting the probability of state s depend not only upon the decision x, but also the previous 

state r. Thus, the transition matrix would be a three dimensional array, p(r, x,s). By giving a suitably 

general definition of “decision”, however, the format where the next state depends only upon the 

current decision can represent any situation representable with the three dimensional notation. For 

many practical problems, the p(x,s) notation is more natural. For example, in an inventory system, if 

we decide to raise the inventory level to 15, the probability that the next state is 7 is usually 

independent of whether we raised the inventory level to 15 from an inventory level of 5 or of 6. 

Similarly, in a maintenance system, if we completely overhaul the system, the probability of the next 

state should be independent of the state before the overhaul. Another way of thinking about a decision 

is that it chooses the probability distribution from which nature chooses the next state. 

 Wang and Zaniewski (1996) describe a system based on a Markov decision process model for 

scheduling maintenance on highways in Arizona and a number of other states. It has been in use since 

1982. A state in this application corresponds to a particular condition of a section of roadway. 

Transition probabilities describe the statistical manner in which a road deteriorates. Actions 

correspond to possible road repairs, such as patch, resurface, or completely replace. Electrical 

distribution companies have similar maintenance problems. With time, tree branches near power lines 

get longer and equipment deteriorates. The actions available to the electrical distribution company are 

things like tree trimming, installing squirrel guards, replacing old equipment, etc. 
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12.9.1 Example: Cash Balance Management 
Suppose we are managing a cash account for which each evening there is a random input or output of 

cash as revenue arrives and/or bills get paid. Each morning, we observe the account level. If the cash 

level gets too high, we want to transfer some of the cash to a longer term investment account that pays 

a higher interest rate. However, if the cash account gets too low, we want to transfer funds from a 

longer term account into the cash account, so we always have sufficient cash on hand. Because we 

require discrete scenarios, let us represent the cash-on-hand status as multiples of $1000. In order to 

avoid negative subscripts, let us make the following correspondence between cash on hand and state: 

Cash on 
hand: 

 

2000 

 

1000 

 
0 

 
1000 

 
2000 

 
3000 

 
4000 

 
5000 

State: 1 2 3 4 5 6 7 8 

Cost: 14 7 0 2 4 6 8 10 

Given a state, we can move to any other state by transferring funds if we incur: 

1) a fixed cost of $3 for making any transfer, and 

2) a variable cost of $5 per thousand dollars transferred. 

 Further, suppose that over night only three transitions are possible: go down one state, stay put, or 

go up one state. Their probabilities are: Prob{down one state} = .4; Prob{no change} = .1; Prob{up 

one state} = .5. 

 In state 1, we assume the probability of no change is .5; whereas, in state 8, the probability of no 

change is .6. We can think of the sequence of events each day as:  

i. we observe the cash level in the morning, 

ii. we make any transfers deemed appropriate, 

iii. overnight the cash level either increases by $1000, stays the same, or decreases by $1000. 

A "scalar" model is: 

MIN = 10 * W88 + 18 * W87 + 23 * W86 + 28 * W85  

+ 33 * W84 + 38 * W83 + 43 * W82 + 48 * W81 + 16 * W78  

+  8 * W77 + 16 * W76 + 21 * W75 + 26 * W74 + 31 * W73  

+ 36 * W72 + 41 * W71 + 19 * W68 + 14 * W67 +  6 * W66  

+ 14 * W65 + 19 * W64 + 24 * W63 + 29 * W62 + 34 * W61  

+ 22 * W58 + 17 * W57 + 12 * W56 +  4 * W55 + 12 * W54  

+ 17 * W53 + 22 * W52 + 27 * W51 + 25 * W48 + 20 * W47  

+ 15 * W46 + 10 * W45 +  2 * W44 + 10 * W43 + 15 * W42  

+ 20 * W41 + 28 * W38 + 23 * W37 + 18 * W36 + 13 * W35  

+  8 * W34 +  8 * W32 + 13 * W31 + 40 * W28 + 35 * W27  

+ 30 * W26 + 25 * W25 + 20 * W24 + 15 * W23 +  7 * W22  

+ 15 * W21 + 52 * W18 + 47 * W17 + 42 * W16 + 37 * W15  

+ 32 * W14 + 27 * W13 + 22 * W12 + 14 * W11; 

! Probabilities sum to 1; 

    W88 + W87 + W86 + W85 + W84 + W83  + W82 + W81 

  + W78  + W77  + W76  + W75  + W74  + W73  + W72  + W71 

  + W68  + W67  + W66  + W65  + W64  + W63  + W62  + W61 

  + W58  + W57  + W56  + W55  + W54  + W53  + W52  + W51 

  + W48  + W47  + W46  + W45  + W44  + W43  + W42  + W41 
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  + W38  + W37  + W36  + W35  + W34  + W33  + W32  + W31 

  + W28  + W27  + W26  + W25  + W24  + W23  + W22  + W21 

  + W18  + W17  + W16  + W15  + W14  + W13  + W12  + W11 = 1;  

! Prob{out of state 1}- Prob{ into state 1} = 0; 

- .4 * W82 - .5 * W81 - .4 * W72 - .5 * W71 - .4 * W62  

- .5 * W61 - .4 * W52 - .5 * W51 - .4 * W42 - .5 * W41  

- .4 * W32 - .5 * W31 - .4 * W22 - .5 * W21 + W18 + W17  

+ W16 + W15 + W14 + W13 + .6 * W12 + .5 * W11 = 0; 

! Into state 2; 

- .4 * W83 - .1 * W82 - .5 * W81 - .4 * W73 - .1 * W72  

- .5 * W71 - .4 * W63 - .1 * W62 - .5 * W61 - .4 * W53  

- .1 * W52 - .5 * W51 - .4 * W43 - .1 * W42 - .5 * W41  

- .4 * W33 - .1 * W32 - .5 * W31 + W28 + W27 + W26 + W25 + W24 + .6 * 

W23 + .9 * W22 + .5 * W21 - .4 * W13 - .1 * W12 - .5 * W11 = 0; 

! Into state 3; 

- .4 * W84 - .1 * W83 - .5 * W82 - .4 * W74 - .1 * W73  

- .5 * W72 - .4 * W64 - .1 * W63 - .5 * W62 - .4 * W54  

- .1 * W53 - .5 * W52 - .4 * W44 - .1 * W43 - .5 * W42 + W38 + W37 + 

W36 + W35 + .6 * W34 + .9 * W33 + .5 * W32 + W31 - .4 * W24 - .1 * 

W23 - .5 * W22 - .4 * W14 - .1 * W13 - .5 * W12 = 0; 

! Into state 4; 

- .4 * W85 - .1 * W84 - .5 * W83 - .4 * W75 - .1 * W74  

- .5 * W73 - .4 * W65 - .1 * W64 - .5 * W63 - .4 * W55  

- .1 * W54 - .5 * W53 + W48 + W47 + W46 + .6 * W45 + .9 * W44 + .5 * 

W43 + W42 + W41 - .4 * W35 - .1 * W34 - .5 * W33 - .4 * W25 - .1 * 

W24 - .5 * W23 - .4 * W15 - .1 * W14 - .5 * W13 = 0; 

! Into state 5; 

- .4 * W86 - .1 * W85 - .5 * W84 - .4 * W76 - .1 * W75  

- .5 * W74 - .4 * W66 - .1 * W65 - .5 * W64 + W58 + W57  

+ .6 * W56 + .9 * W55 + .5 * W54 + W53 + W52 + W51 - .4 * W46 - .1 * 

W45 - .5 * W44 - .4 * W36 - .1 * W35 - .5 * W34 - .4 * W26 - .1 * W25 

- .5 * W24 - .4 * W16 - .1 * W15 - .5 * W14 =0; 

! Into state 6; 

- .4 * W87 - .1 * W86 - .5 * W85 - .4 * W77 - .1 * W76  

- .5 * W75 + W68 + .6 * W67 + .9 * W66 + .5 * W65 + W64 + W63 + W62  

+ W61 - .4 * W57 - .1 * W56 - .5 * W55 - .4 * W47 - .1 * W46 - .5 * 

W45 - .4 * W37 - .1 * W36 - .5 * W35 - .4 * W27 - .1 * W26 - .5 * W25 

- .4 * W17 - .1 * W16 - .5 * W15 = 0; 

! Into state 7; 

- .4 * W88 - .1 * W87 - .5 * W86 + .6 * W78 + .9 * W77 + .5 * W76 + 

W75 + W74 + W73 + W72 + W71 - .4 * W68 - .1 * W67 - .5 * W66 - .4 * 

W58 - .1 * W57 - .5 * W56 - .4 * W48 - .1 * W47 - .5 * W46 - .4 * W38 

- .1 * W37 - .5 * W36 - .4 * W28 - .1 * W27 - .5 * W26 - .4 * W18 - 

.1 * W17 - .5 * W16 = 0; 

! Into state 8; 

.4 * W88 + .5 * W87 + W86 + W85 + W84 + W83 + W82 + W81 - .6 * W78 - 

.5 * W77 - .6 * W68 - .5 * W67 - .6 * W58 - .5 * W57 - .6 * W48 - .5 

* W47 - .6 * W38 - .5 * W37 - .6 * W28 - .5 * W27 - .6 * W18 - .5 * 

W17 = 0; 

END 

 Note in the objective, the term 23 * W86 can be thought of as (10 + 3 + 5 * 2)*W86. Similarly, the 

term + .6 * W12 in the "into state 1" constraint, comes from the fact that the probability there is a 



Decision Making Under Uncert. & Stoch. Programs Chapter 12     375 

change out of state 1 in the morning is W12. At the same time, there is also a probability of changing 

into state 1 from state 1 the previous morning of W12 * Prob{down transition over night} = W12*.4. 

The net is W12 - .4*W12 = .6*W12. 

 Part of the solution report is reproduced below: 

Obj. value=    5.633607 

Variable           Value        Reduced Cost 

     W64       0.1024590           0.0000000 

     W55       0.2049180           0.0000000 

     W44       0.2663934           0.0000000 

     W22       0.1311475           0.0000000 

     W13       0.5245902E-01       0.0000000 

     W33       0.2426230           0.0000000 

 For example, variable W64 = 0.1024590 means that, in a fraction 0.1024590 of the periods, we 

will find the system in state 6 and we will (or should) take action 4. Note, there is no other positive 

variable involving state 6. So, this implies, if the system is in state 6, we should always take action 4. 

The expected cost per day of this policy is 5.633607. 

Summarizing: 

If the state is 1 or less, we should raise it to state 3. 

If the state is 6 or more, we should drop it to state 4. 

If the state is 2, 3, 4, or 5, we should stay put. 

 Here is a general purpose sets formulation of a Markov decision problem, with data specific to our 

cash balance problem: 

SETS: ! Markov decision process model(MARKOVDP); 

 STATE: H;  

 DCSN:; 

 SXD( STATE, DCSN): C, W; 

 DXS( DCSN, STATE): P; 

ENDSETS 

DATA: 

! Data for the cash balance problem; 

! The states ....;  

STATE= SN2K SN1K S000 SP1K SP2K SP3K SP4K SP5K; 

! The cost of finding system in a given state; 

   H =  14   7    0    2    4    6    8   10; 

! Possible decisions; 

 DCSN= DN2K DN1K D000 DP1K DP2K DP3K DP4K DP5K; 

! The cost of explicitly changing to any other state; 

   C =  0    8   13   18   23   28   33   38 

        8    0    8   13   18   23   28   33 

       13    8    0    8   13   18   23   28 

       18   13    8    0    8   13   18   23 

       23   18   13    8    0    8   13   18 

       28   23   18   13    8    0    8   13 

       33   28   23   18   13    8    0    8 

       38   33   28   23   18   13    8    0; 
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! Prob{ nature moves system to state j| we made decision i}; 

   P = .5   .5    0    0    0    0    0    0 

       .4   .1   .5    0    0    0    0    0 

       0    .4   .1   .5    0    0    0    0 

       0     0   .4   .1   .5    0    0    0 

       0     0    0   .4   .1   .5    0    0 

       0     0    0    0   .4   .1   .5    0 

       0     0    0    0    0   .4   .1   .5 

       0     0    0    0    0    0   .4   .6; 

ENDDATA 

!--------------------------------------------------; 

!Minimize the average cost per period; 

MIN=@SUM(SXD( S, X): ( H( S) + C( S, X))* W( S, X)); 

!The probabilities must sum to 1; 

  @SUM( SXD( S, X): W( S, X)) = 1; 

!Rate at which we exit state S = rate of entry to S. 

 Note, W( S, X) = Prob{ state is S and we make decision X}; 

  @FOR( STATE( S): 

   @SUM( DCSN( X): W( S, X))=  

    @SUM( SXD( R, K): W( R, K)* P( K, S)); 

            ); 

 In the above example, the number of decision alternatives equaled the number of states, so the 

transition matrix was square. In general, the number of decisions might be more or less than the 

number of states, so the transition matrix need not be square. 

 The above model minimizes the average cost per period in the long run. If discounted present 

value, rather than average cost per period, is of concern, then see d’Epenoux (1963) for a linear 

programming model, similar to the above, that does discounting. 

12.10 Chance-Constrained Programs 
A drawback of the methods just discussed is problem size can grow very large if the number of 

possible states of nature is large. Chance-constrained programs do not apply to exactly the same 

problem and, as a result, do not become large as the number of possible states of nature gets large. The 

stochastic programs discussed thus far had the feature that every constraint had to be satisfied by some 

combination of first- and second-period decisions. Chance-constrained programs, however, allow each 

constraint to be violated with a certain specified probability. An advantage to this approach for 

tolerating uncertainty is the chance-constrained model has essentially the same size as the LP for a 

corresponding problem with no random elements. 
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 We will illustrate the idea with the snow removal problem. Under the chance-constrained 

approach, there are no second-stage decision variables, and we would have to specify a probability 

allowance for each constraint. For example, we might specify that with probability at least 0.75 we 

must be able to provide the snow removal capacity required by the severity of the winter. For our 

problem, it is very easy to see that this means we must provide 5,100 truck-days of snow removal 

capacity. For example, if only 4,400 truck-days of capacity were provided, then the probability of 

sufficient capacity would only be 0.4. Let us assume one truck-day of operation costs $116, and one 

truck-day of salting equals 1.14 truck-days of plowing. Then, the appropriate chance-constrained LP is 

the simple model: 

Min=70*BF1 + 20*BS1 + 116*P    + 116*S; 

      BF1              + P        + S =    0; 

              BS1                 + S =    0; 
                          P        + S >= 5000; 

                          P + 1.14 * S >= 5100; 

12.11 Problems 
1. What is the expected value of perfect information in the corn/soybean/sorghum planting problem? 

2. The farmer in the corn/soybean/sorghum problem is reluctant to plant all soybeans because, if the 

season is wet, he will make $20 less per acre than he would if he had planted all corn. Can you 

react to his risk aversion and recommend a planting mix where the profit per acre is never more 

than $15 from the planting mix that in retrospect would have been best for the particular outcome? 

3. Analyze the snow removal problem of this chapter for the situation where the cost of fuel in a cold 

winter is $80 per truck-day rather than $73, and the cost of salt in a cold winter is $35 rather than 

$32. Include in your analysis the derivation of the expected value of perfect information. 

4. A farmer has 1000 acres available for planting to either corn, sorghum, or soybeans. The yields of 

the three crops, in bushels per acre, as a function of the two possible kinds of season are: 

 Corn Sorghum Beans 

Wet 100 43 45 

Dry    45 35 33 

 The probability of a wet season is 0.6. The probability of a dry season is 0.4. Corn sells for 

$2/bushel; whereas, sorghum and beans each sell for $4/bushel. The total production cost for any 

crop is $100/acre, regardless of type of season. The farmer can also raise livestock. One unit of 

livestock uses one hundred bushels of corn. The profit contribution of one unit of livestock, 

exclusive of its corn consumption, is $215. Corn can be purchased at any time on the market for 

$2.20/bushel. The decision of how much to raise of livestock and of each crop must be made 

before the type of season is known. 

a) What should the farmer do? 

b) Formulate and solve the problem by the scenario-based stochastic programming 

approach. 
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5. A firm serves essentially two markets, East and West, and is contemplating the location of one or 

more distribution centers (DC) to serve these markets. A complicating issue is the uncertainty in 

demand in each market. The firm has enumerated three representative scenarios to characterize the 

uncertainty. The table below gives (i) the fixed cost per year of having a DC at each of three 

candidate locations, and (ii) the profit per year in each market as a function of the scenario and 

which DC is supplying the market. Each market will be assigned to that one open DC that results 

in the most profit. This assignment can be done after we realize the scenario that holds. The DC 

location decision must be made before the scenario is known. 

Profit by Scenario/Region and Supplier DC 
  Scenario 

One 
Scenario 

Two 
Scenario 

Three 

DC 
Location 

Fixed 
Cost 

 
East 

 
West 

 
East 

 
West 

 
East 

 
West 

A 51 120 21 21 40 110 11 

B 49 110 28 32 92 70 70 

C 52 60 39 20 109 20 88 

 For example, if Scenario Three holds and we locate DC’s at A and C, East would get served 

from A, West from C, and total profits would be 110 + 88  51  52 = 95. 

a) If Scenario One holds, what is the best combination of DC’s to have open? 

b) If Scenario Two holds, what is the best combination of DC’s to have open? 

c) If Scenario Three holds, what is the best combination of DC’s to have open? 

d) If all three scenarios are equally likely, what is the best combination of DC’s to have 

open?
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