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Portfolio Optimization  
 
 
 

13.1 Introduction 
Portfolio models are concerned with investment where there are typically two criteria: expected return 

and risk. The investor wants the former to be high and the latter to be low. There is a variety of measures 

of risk. The most popular measure of risk has been variance in return. Even though there are some 

problems with it, we will first look at it very closely. 

13.2 The Markowitz Mean/Variance Portfolio Model 
The portfolio model introduced by Markowitz (1959), see also Roy (1952), assumes an investor has 

two considerations when constructing an investment portfolio: expected return and variance in return 

(i.e., risk). Variance measures the variability in realized return around the expected return, giving equal 

weight to realizations below the expected and above the expected return. The Markowitz model might 

be mildly criticized in this regard because the typical investor is probably concerned only with 

variability below the expected return, so-called downside risk. The Markowitz model requires two 

major kinds of information: (1) the estimated expected return for each candidate investment and (2) the 

covariance matrix of returns. The covariance matrix characterizes not only the individual variability of 

the return on each investment, but also how each investment’s return tends to move with other 

investments. We assume the reader is familiar with the concepts of variance and covariance as 

described in most intermediate statistics texts. Part of the appeal of the Markowitz model is it can be 

solved by efficient quadratic programming methods. Quadratic programming is the name applied to the 

class of models in which the objective function is a quadratic function and the constraints are linear. 

Thus, the objective function is allowed to have terms that are products of two variables such as x
2
 and 

x  y. 

 Quadratic programming is computationally appealing because the algorithms for linear programs can 

be applied to quadratic programming with only modest modifications. Loosely speaking, the reason only 

modest modification is required is the first derivative of a quadratic function is a linear function. Because 

LINGO has a general nonlinear solver, the limitation to quadratic functions is helpful, but not crucial. 
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13.2.1 Example 
We will use some publicly available data from Markowitz (1959). Eppen, Gould and Schmidt (1991) 

use the same data. The following table shows the increase in price, including dividends, for three 

stocks over a twelve-year period: 

 Growth in 
Year S&P500 ATT GMC USX 

43 1.259 1.300 1.225 1.149 

44 1.198 1.103 1.290 1.260 

45 1.364 1.216 1.216 1.419 

46 0.919 0.954 0.728 0.922 

47 1.057 0.929 1.144 1.169 

48 1.055 1.056 1.107 0.965 

49 1.188 1.038 1.321 1.133 

50 1.317 1.089 1.305 1.732 

51 1.240 1.090 1.195 1.021 

52 1.184 1.083 1.390 1.131 

53 0.990 1.035 0.928 1.006 

54 1.526 1.176 1.715 1.908 

 For reference later, we have also included the change each year in the Standard and Poor’s/S&P 

500 stock index. To illustrate, in the first year, ATT appreciated in value by 30%. In the second year, 

GMC appreciated in value by 29%. Based on the twelve years of data, we can use any standard 

statistical package to calculate a covariance matrix for three stocks: ATT, GMC, and USX. The matrix 

is: 

 ATT GMC USX 

ATT 0.01080754 0.01240721 0.01307513 

GMC 0.01240721 0.05839170 0.05542639 

USX 0.01307513 0.05542639 0.09422681 

 From the same data, we estimate the expected return per year, including dividends, for ATT, GMC, 

and USX as 0.0890833, 0.213667, and 0.234583, respectively. 

 The correlation matrix makes it more obvious how two random variables move together. The 

correlation between two random variables equals the covariance between the two variables, divided by 

the product of the standard deviations of the two random variables. For our three investments, the 

correlation matrix is as follows: 

 ATT GMC USX 

ATT 1.0   

GMC 0.493895589 1.0  

USX 0.409727718 0.747229121 1.0 

 The correlation can be between 1 and +1 with +1 being a high correlation between the two. 

Notice GMC and USX are highly correlated. ATT tends to move with GMC and USX, but not nearly so 

much as GMC moves with USX. 
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 Let the symbols ATT, GMC, and USX represent the fraction of the portfolio devoted to each of the 

three stocks. Suppose, we desire a 15% yearly return. The entire model can be written as: 

MODEL: 

!Minimize end-of-period variance in portfolio value; 

[VAR] MIN = .01080754 * ATT * ATT +.01240721 * ATT * GMC + 

.01307513 * ATT * USX +.01240721 * GMC * ATT +.05839170 * GMC * 

GMC +.05542639 * GMC * USX +.01307513 * USX * ATT +.05542639 * USX 

* GMC +.09422681 * USX * USX; 

! Use exactly 100% of the starting budget; 

[BUD] ATT + GMC + USX = 1; 

! Required wealth at end of period; 

[RET] 1.089083 * ATT + 1.213667 * GMC + 1.234583 * USX >= 1.15; 

END 

 Note the two constraints are effectively in the same units. The first constraint is effectively a 

“beginning inventory” constraint, while the second constraint is an “ending inventory” constraint. We 

could have stated the expected return constraint just as easily as: 

.0890833 * ATT + .213667 * GMC + .234583 * USX >= .15 

 Although perfectly correct, this latter style does not measure end-of-period state in quite the same 

way as start-of-period state. Fans of consistency may prefer the former style. 

 The equivalent sets-based formulation of the model follows: 

MODEL: 

 SETS: 

  ASSET: AMT, RET; 

  COVMAT(ASSET, ASSET): VARIANCE; 

 ENDSETS 

 DATA: 

  ASSET =      ATT      GMC       USX; 

!Covariance matrix and expected returns; 

  VARIANCE = .01080754 .01240721 .01307513 

             .01240721 .05839170 .05542639 

             .01307513 .05542639 .09422681; 

       RET = 1.0890833  1.213667  1.234583; 

    TARGET = 1.15; 

 ENDDATA 

! Minimize the end-of-period variance in portfolio value; 

[VAR] MIN = @SUM( COVMAT(I, J): AMT(I) * AMT(J) * VARIANCE(I, J)); 

!  Use exactly 100% of the starting budget; 

[BUDGET] @SUM( ASSET: AMT) = 1; 

! Required wealth at end of period; 

[RETURN] @SUM( ASSET: AMT * RET) >= TARGET; 

END 
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When we solve the model, we get: 

Optimal solution found at step:         4 

Objective value:                0.2241375E-01 

 Variable           Value        Reduced Cost 

   TARGET        1.150000           0.0000000 

AMT( ATT)       0.5300926           0.0000000 

AMT( GMC)       0.3564106           0.0000000 

AMT( USX)       0.1134968           0.0000000 

RET( ATT)        1.089083           0.0000000 

RET( GMC)        1.213667           0.0000000 

RET( USX)        1.234583           0.0000000 

      Row    Slack or Surplus      Dual Price 

      VAR       0.2241375E-01        1.000000 

   BUDGET       0.0000000           0.3621387 

   RETURN       0.0000000          -0.3538836 

 The solution recommends about 53% of the portfolio be put in ATT, about 36% in GMC and just 

over 11% in USX. The expected return is 15%, with a variance of 0.02241381 or, equivalently, a 

standard deviation of about 0.1497123. 

 We based the model simply on straightforward statistical data based on yearly returns. In practice, 

it may be more typical to use monthly rather than yearly data as a basis for calculating a covariance. 

Also, rather than use historical data for estimating the expected return of an asset, a decision maker 

might base the expected return estimate on more current, proprietary information about expected future 

performance of the asset. One may also wish to use considerable care in estimating the covariances and 

the expected returns. For example, one could use quite recent data to estimate the standard deviations. A 

large set of data extending further back in time could be used to estimate the correlation matrix. Then, 

using the relationship between the correlation matrix and the covariance matrix, one could derive a 

covariance matrix. 
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13.3 Dualing Objectives: Efficient Frontier and Parametric Analysis  
There is no precise way for an investor to determine the “correct” tradeoff between risk and return. 

Thus, one is frequently interested in looking at the tradeoff between the two. If an investor wants a 

higher expected return, she generally has to “pay for it” with higher risk. In finance terminology, we 

would like to trace out the efficient frontier of return and risk. If we solve for the minimum variance 

portfolio over a range of values for the expected return, ranging from 0.0890833 to 0.234583, we get 

the following plot or tradeoff curve for our little three-asset example: 

Figure 13.1 Efficient Frontier 
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 Notice the “knee” in the curve as the required expected return increases past 1.21894. This is the 

point where ATT drops out of the portfolio. 

13.3.1 Portfolios with a Risk-Free Asset 
When one of the investments available is risk free, then the optimal portfolio composition has a 

particularly simple form. Suppose the opportunity to invest money risk free (e.g., in government 

treasury bills) at 5% per year has just become available. Working with our previous example, we now 

have a fourth investment instrument that has zero variance and zero covariance. There is no limit on 

how much can be invested at 5%. We ask the question: How does the portfolio composition change as 

the desired rate of return changes from 15% to 5%? 
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 We will use the following slight generalization of the original Markowitz example model. Notice a 

fourth instrument, treasury bills (TBILL), has been added: 

MODEL: 

! Add a riskless asset, TBILL; 

! Minimize end-of-period variance in portfolio value; 

[VAR] MIN = .01080754 * ATT * ATT +.01240721 * ATT * GMC  

+.01307513 * ATT * USX +.01240721 * GMC * ATT +.05839170 * GMC * 

GMC +.05542639 * GMC * USX +.01307513 * USX * ATT +.05542639 * USX 

* GMC +.09422681 * USX * USX; 

!  Use exactly 100% of the starting budget; 

[BUD]  ATT + GMC + USX + TBILL = 1;  

! Required wealth at end of period; 

[RET] 1.089083 * ATT + 1.213667 * GMC + 1.234583 * USX + 1.05 * 

TBILL >= 1.15; 

END 

Alternatively, this can be also modeled using the sets formulation: 

MODEL: 

SETS: 

 ASSET: AMT, RET; 

 COVMAT(ASSET, ASSET): VARIANCE; 

ENDSETS 

DATA: 

     ASSET=      ATT,     GMC,     USX,   TBILL; 

!Covariance matrix; 

  VARIANCE = .01080754 .01240721 .01307513   0 

             .01240721 .05839170 .05542639   0 

             .01307513 .05542639 .09422681   0 

              0         0         0          0; 

       RET = 1.0890833 1.213667 1.234583, 1.05; 

       TARGET = 1.15; 

ENDDATA 

! Minimize the end-of-period variance in portfolio value;  

[VAR] MIN= @SUM( COVMAT( I, J): AMT( I)* AMT( J) * VARIANCE( I, J)); 

!  Use exactly 100% of the starting budget; 

[BUDGET] @SUM(ASSET: AMT) = 1; 

! Required wealth at end of period; 

[RETURN] @SUM( ASSET: AMT * RET) >= TARGET; 

END 
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When solved, we find:  

Optimal solution found at step:         8 

Objective value:                0.2080344E-01 

Variable           Value        Reduced Cost 

     ATT       0.8686550E-01      -0.2093725E-07 

     GMC       0.4285285           0.0000000 

     USX       0.1433992          -0.2218303E-07 

   TBILL       0.3412068           0.0000000 

     Row    Slack or Surplus      Dual Price 

     VAR       0.2080344E-01        1.000000 

     BUD       0.0000000           0.4368723 

     RET       0.0000000          -0.4160689 

 Notice more than 34% of the portfolio was invested in the risk-free investment, even though its 

return rate, 5%, is less than the target of 15%. Further, the variance has dropped to about 0.0208 from 

about 0.0224. 

 What happens as we decrease the target return towards 5%? Clearly, at 5%, we would put zero in 

ATT, GMC, and USX. A simple form of solution would be to keep the same proportions in ATT, GMC, 

and USX, but just change the allocation between the risk-free asset and the risky ones. Let us check an 

intermediate point. When we decrease the required return to 10%, we get the following solution: 

Optimal solution found at step:         8 

Objective value:                0.5200865E-02 

Variable           Value        Reduced Cost 

     ATT       0.4342898E-01       0.0000000 

     GMC       0.2142677           0.2857124E-06 

     USX       0.7169748E-01       0.1232479E-06 

   TBILL       0.6706058           0.0000000 

     Row    Slack or Surplus      Dual Price 

     VAR       0.5200865E-02        1.000000 

     BUD       0.0000000           0.2184348 

     RET       0.2384186E-07      -0.2080331 

This solution supports our conjecture:  

as we change our required return, the relative proportions devoted to risky 

investments do not change. Only the allocation between the risk-free asset and the 

risky assets change.  

 From the above solution, we observe that, except for round-off error, the amount invested in ATT, 

GMC, and USX is allocated in the same way for both solutions. Thus, two investors with different risk 

preferences would nevertheless both carry the same mix of risky stocks in their portfolio. Their 

portfolios would differ only in the proportion devoted to the risk-free asset. Our observation from the 

above example in fact holds in general. Thus, the decision of how to allocate funds among stocks, 

given the amount to be invested, can be separated from the questions of risk preference. Tobin received 

the Nobel Prize in 1981, largely for noticing the above feature, the so-called Separation Theorem. So, 

if you noticed it, you must be Nobel Prize caliber.  
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13.3.2 The Sharpe Ratio 
For some portfolio p, of risky assets, excluding the risk-free asset, let: 

Rp = its expected return, 

sp = its standard deviation in return, and 

r0 = the return of the risk-free asset. 

 A plausible single measure (as opposed to the two measures, risk and return) of attractiveness of 

portfolio p is the Sharpe ratio: 

(Rp - r0 ) / sp  

 In words, it measures how much additional return we achieved for the additional risk we took on, 

relative to putting all our money in the risk-free asset. 

 It happens the portfolio that maximizes this ratio has a certain well-defined appeal. Suppose: 

t = our desired target return, 

wp = fraction of our wealth we place in portfolio p (the rest placed in the risk-free asset). 

To meet our return target, we must have: 

( 1 - wp ) * r0 + wp * Rp = t. 

The standard deviation of our total investment is: 

wp * sp. 

Solving for wp in the return constraint, we get: 

wp = ( t – r0) /( Rp – r0). 

Thus, the standard deviation of the portfolio is: 

wp * sp = [( t – r0) /( Rp – r0)] * sp. 

Minimizing the portfolio standard deviation means: 

Min [( t – r0) /( Rp – r0)] * sp 

or 

Min [( t – r0) * sp /( Rp – r0)]. 

This is equivalent to: 

Max ( Rp – r0) /sp. 

 So, regardless of our risk/return preference, the money we invest in risky assets should be invested 

in the risky portfolio that maximizes the Sharpe ratio. 
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 The following illustrates for when the risk free rate is 5%: 

MODEL: 

! Maximize the Sharpe ratio; 

 MAX =  

(1.089083*ATT + 1.213667*GMC + 1.234583*USX - 1.05)/ 

 ((.01080754 * ATT * ATT   + .01240721 * ATT * GMC  

 + .01307513 * ATT * USX + .01240721 * GMC * ATT  

 + .05839170 * GMC * GMC + .05542639 * GMC * USX 

 + .01307513 * USX * ATT + .05542639 * USX * GMC  

 + .09422681 * USX * USX)^.5); 

! Use exactly 100% of the starting budget; 

 [BUD]  ATT + GMC + USX = 1; 

END 

The solution is: 

Optimal solution found at step:         7 

Objective value:                0.6933179 

Variable           Value        Reduced Cost 

     ATT       0.1319260           0.1263448E-04 

     GMC       0.6503984           0.0000000 

     USX       0.2176757           0.1250699E-04 

 Notice the relative proportions of ATT, GMC, and USX are the same as in the previous model 

where we explicitly included a risk free asset with a return of 5%. For example, notice that, except for 

round-off error: 

.1319262/ .6503983 = 0.08686515/ .4285286. 

13.4 Important Variations of the Portfolio Model 
There are several issues that may concern you when you think about applying the Markowitz model in 

its simple form: 

a) As we increase the number of assets to consider, the size of the covariance matrix 

becomes overwhelming. For example, 1000 assets implies 1,000,000 covariance terms, or 

at least 500,000 if symmetry is exploited. 

b) If the model were applied every time new data become available (e.g., weekly), we would 

“rebalance” the portfolio frequently, making small, possibly unimportant adjustments in 

the portfolio. 

c) There are no upper bounds on how much can be held of each asset. In practice, there 

might be legal or regulatory reasons for restricting the amount of any one asset to no 

more than, say, 5% of the total portfolio. Some portfolio managers may set the upper 

limit on a stock to one day’s trading volume for the stock. The reasoning being, if the 

manager wants to “unload” the stock quickly, the market price would be affected 

significantly by selling so much. 

 Two approaches for simplifying the covariance structure have been proposed: the scenario 

approach and the factor approach. For the issue of portfolio “nervousness”, the incorporation of 

transaction costs is useful. 
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13.4.1 Portfolios with Transaction Costs 
The models above do not tell us much about how frequently to adjust our portfolio as new information 

becomes available (i.e., new estimates of expected return and new estimates of variance). If we applied 

the above models every time new information became available, we would be constantly adjusting our 

portfolio. This might make our broker happy because of all the commission fees, but that should be a 

secondary objective at best. The important observation is that there are costs associated with buying 

and selling. There are the obvious commission costs, and the not so obvious bid-ask spread. The 

bid-ask spread is effectively a transaction cost for buying and selling. 

 The method we will describe assumes transaction costs are paid at the beginning of the period. It 

is a straightforward exercise to modify the model to handle the case of transaction costs paid at the end 

of the period. The major modifications to the basic portfolio model are: 

a) We must introduce two additional variables for each asset, an “amount bought” variable 

and an “amount sold” variable. 

b) The budget constraint must be modified to include money spent on commissions. 

c) An additional constraint must be included for each asset to enforce the requirement:  

amount invested in asset i = (initial holding of i) + (amount bought of i)  (amount 

sold of i). 

13.4.2 Example 
Suppose we have to pay a 1% transaction fee on the amount bought or sold of any stock and our 

current portfolio is 50% ATT, 35% GMC, and 15% USX. This is pretty close to the optimal mix. 

Should we incur the cost of adjusting? The following is the relevant model: 

MODEL: 

[VAR] MIN = .01080754 * ATT * ATT +.01240721 * ATT * GMC +.01307513 

* ATT * USX +.01240721 * GMC * ATT +.05839170 * GMC * GMC 

+.05542639 * GMC * USX +.01307513 * USX * ATT +.05542639 * USX * 

GMC +.09422681 * USX * USX; 

[BUD] ATT + GMC + USX + .01 * ( BA + BG + BU + SA + SG + SU) = 1; 

[RET] 1.089083 * ATT + 1.213667 * GMC + 1.234583 * USX >= 1.15; 

[NETA] ATT = .50 + BA - SA; 

[NETG] GMC = .35 + BG - SG; 

[NETU] USX = .15 + BU - SU; 

END 

 The BUD constraint says the total uses of funds must equal 1. Another way of interpreting the 

BUD constraint is to subtract each of the NET constraints from it. We then get: 

[BUD].01 * (BA + BG + BU + SA + SG + SU) + BA + BG + BU=SA + SG + SU; 

It says any purchases plus transaction fees must be funded by selling. 



Portfolio Optimization  Chapter 13     389 

 For reference, the following is the sets formulation of the above model: 

MODEL: 

SETS: 

 ASSET: AMT, RETURN, BUY, SELL, START; 

 COVMAT( ASSET, ASSET):VARIANCE; 

ENDSETS 

DATA: 

  ASSET = ATT, GMC, USX; 

 VARIANCE = .0108075 .0124072 .0130751 

            .0124072 .0583917 .0554264 

            .0130751 .0554264 .0942268; 

   RETURN = 1.089083 1.213667 1.234583; 

    START = .5  .35 .15; 

   TARGET = 1.15; 

ENDDATA 

[VAR] MIN = @SUM( COVMAT(I, J): AMT(I) * AMT(J) * VARIANCE(I, J)); 

[BUD] @SUM( ASSET(I): AMT(I) + .01 * ( BUY(I) + SELL(I))) = 1; 

[RET] @SUM( ASSET: AMT * RETURN) >= TARGET; 

@FOR( ASSET(I): [NET] AMT(I) = START(I) + BUY(I) - SELL(I);); 

END 

The solution follows: 

Optimal solution found at step:         4 

Objective value:                0.2261146E-01 

Variable           Value        Reduced Cost 

     ATT       0.5264748           0.0000000 

     GMC       0.3500000           0.0000000 

     USX       0.1229903           0.0000000 

      BA       0.2647484E-01       0.0000000 

      BG       0.0000000           0.4824887E-02 

      BU       0.0000000           0.6370753E-02 

      SA       0.0000000           0.6370753E-02 

      SG       0.0000000           0.1545865E-02 

      SU       0.2700968E-01       0.0000000 

     Row    Slack or Surplus      Dual Price 

     VAR       0.2261146E-01        1.000000 

     BUD       0.0000000           0.3185376 

     RET       0.0000000          -0.3167840 

    NETA       0.0000000           0.3185376E-02 

    NETG       0.0000000          -0.1639511E-02 

    NETU       0.0000000          -0.3185376E-02 

 The solution recommends buying a little bit more ATT, neither buy nor sell any GMC, and sell a 

little USX. 
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13.4.3 Portfolios with Taxes 
Taxes are an unpleasant complication of investment analysis that should be considered. The effect of 

taxes on a portfolio is illustrated by the following results during one year for two similar 

“growth-and-income” portfolios from the Vanguard company. Portfolio S was managed without (Sans) 

regard to taxes. Portfolio T was managed with after-tax performance in mind: 

 Distributions Initial 

Portfolio Income Gain-from-sales Share-price Return 

S $0.41 $2.31 $19.85 33.65% 

T $0.28 $0.00 $13.44 34.68% 

 The tax managed portfolio, probably just by chance, in fact had a higher before tax return. It looks 

even more attractive after taxes. If the tax rate for both dividend income and capital gains is 30%, then 

the tax paid at year end per dollar invested in portfolio S is .3  (.41 + 2.31) /19.85 = 4.1 cents; 

whereas, the tax per dollar invested in portfolio S is .3  .28/13.44 = 0.6 of a cent. 

 Below is a generalization of the Markowitz model to take into account taxes. As input, it requires 

in particular:  

a) number of shares held of each kind of asset,  

b) price per share paid for each asset held, and  

c) estimated dividends per share for each kind of asset. 

 The results from this model will differ from a model that does not consider taxes in that this 

model, when considering equally attractive assets, will tend to:  

i. purchase the asset that does not pay dividends, so as to avoid the immediate tax on 

dividends,  

ii. sell the asset that pays dividends, and  

iii. sell the asset whose purchase cost was higher, so as to avoid more tax on capital gains.  

 This is all given that two assets are otherwise identical (presuming rates of return are computed 

including dividends). For completeness, this model also includes transaction costs and illustrates how a 

correlation matrix can be used instead of a covariance matrix to describe how assets move together: 

MODEL: 

! Generic Markowitz portfolio model that takes into account 

  bid/ask spread and taxes.  (PORTAX) 

  Keywords: Markowitz, portfolio, taxes, transaction costs; 

 SETS: 

  ASSET: RET, START, BUY, SEL, APRICE, BUYAT, SELAT, DVPS, STD, X; 

 ENDSETS 

 DATA: 

! Data based on original Markowitz example;  

 ASSET =  TBILL   ATT        GMC      USX; 

! The expected returns as growth factors; 

   RET  =  1.05  1.089083 1.21367  1.23458; 

! S. D. in return for each asset; 

   STD =   0     .103959  .241644  .306964; 

! Starting composition of the portfolio in shares; 

   START =  10     50       70       350; 

! Price per share at acquisition; 

   APRICE = 1000   80       89        21; 
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! Current bid/ask price per share; 

   BUYAT  = 1000   87       89        27; 

   SELAT  = 1000   86       88        26; 

! Dividends per share(estimated); 

   DVPS =   0     .5        0         0; 

! Tax rate; 

   TAXR = .32; 

! The desired growth factor; 

   TARGET = 1.15; 

 ENDDATA 

 SETS: 

  TMAT( ASSET, ASSET) | &1 #GE# &2: CORR; 

 ENDSETS 

 DATA: 

! Correlation matrix; 

   CORR= 1.0 

         0  1.000000   

         0  0.4938961  1.000000  

         0  0.4097276  0.7472293 1.000000 ; 

 ENDDATA 

!---------------------------------------------------------------; 

!  Min the var in portfolio return; 

 [OBJ] MIN = 

      @SUM( ASSET( I):  ( X( I)*SELAT( I)* STD( I))^2) + 

        2 * @SUM( TMAT( I, J) | I #NE# J: 

            CORR( I, J) * X( I)* SELAT( I) * STD( I)  

                        * X( J)* SELAT( J) * STD( J)) ; 

! Budget constraint, sales must cover purchases + taxes; 

 [BUDC] @SUM( ASSET( I): 

          SELAT( I) * SEL( I) - BUYAT( I) * BUY( I)) >= TAXES;  

 [TAXC]  TAXES >= TAXR * @SUM( ASSET( I): 

           DVPS( I)* X( I) + SEL( I) * ( SELAT( I) - APRICE( I))); 

! After tax return requirement.  This assumes we do not pay 

   tax on appreciation until we sell; 

 [RETC] @SUM( ASSET( I):  

         RET( I)* X(I)* SELAT( I)) - TAXES >= 

         TARGET * @SUM( ASSET(I): START( I) * SELAT( I)); 

! Inventory balance for each asset; 

  @FOR( ASSET( I): 

    [BAL] X( I) = START( I) + BUY( I) - SEL( I);  ); 

 END 
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13.4.4 Factors Model for Simplifying the Covariance Structure 
Sharpe (1963) introduced a substantial simplification to the modeling of the random behavior of stock 

market prices. He proposed that there is a “market factor” that has a significant effect on the movement 

of a stock. The market factor might be the Dow-Jones Industrial average, the S&P 500 average, or the 

Nikkei index. If we define: 

M  =  the market factor, 

m0  =  E(M), 

s0
2  

=  var(M), 

ei   =  random movement specific to stock i, 

si
2
  =  var(ei). 

Sharpe’s approximation assumes (where E( ) denotes expected value): 

E(ei) = 0 

E(ei ej) = 0      for i  j, 

E(ei M) = 0. 

 Then, according to the Sharpe single factor model, the return of one dollar invested in stock or 

asset i is: 

ui + bi M + ei. 

 The parameters ui and bi are obtained by regression (e.g., least squares, of the return of asset i on 

the market factor). The parameter bi is known as the “beta” of the asset. Let: 

Xi = amount invested in asset i and  

define the variance in return of the portfolio as: 

var[ Xi(ui + bi M + ei)] 

 = var( Xi bi M) + var( Xi ei) 

 = ( Xi bi)
2
 so

2
 +  Xi

2
si

2
. 

Thus, our problem can be written: 

Minimize    Z 
2
 so

2
 +  Xi

2  
si

2
 

subject to 

Z   Xi bi = 0 

 Xi = 1 

 Xi ( ui + bi mo)  r. 

 So, at the expense of adding one constraint and one variable, we have reduced a dense covariance 

matrix to a diagonal covariance matrix. 

 In practice, perhaps a half dozen factors might be used to represent the “systematic risk”. That is, 

the return of an asset is assumed to be correlated with a number of indices or factors. Typical factors 

might be a market index such as the S&P 500, interest rates, inflation, defense spending, energy prices, 

gross national product, correlation with the business cycle, various industry indices, etc. For example, 

bond prices are very affected by interest rate movements. 
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13.4.5 Example of the Factor Model 
The Factor Model represents the variance in return of an asset as the sum of the variances due to the 

asset’s movement with one or more factors, plus a factor-independent variance.  
 To illustrate the factor model, we used multiple regression to regress the returns of ATT, GMC, 

and USX on the S&P 500 index for the same period. The model with solution is: 

MODEL: 

! Multi factor portfolio model; 

 SETS: 

  ASSET: ALPHA, SIGMA, X; 

  FACTOR: RETF, SIGFAC, Z; 

  AXF( ASSET, FACTOR): BETA; 

 ENDSETS 

 DATA: 

! The factor(s); 

  FACTOR = SP500; 

! Mean and s.d. of factor(s); 

   RETF = 1.191460; 

   SIGFAC = .1623019; 

! The stocks were multi-regressed on the factors; 

! i.e.:  Return(i) = Alpha(i) + Beta(i) * SP500 + error(i); 

   ASSET =    ATT        GMC      USX; 

   ALPHA = .563976   -.263502  -.580959; 

   BETA  = .4407264  1.23980   1.52384; 

   SIGMA = .075817    .125070   .173930; 

! The desired return; 

   TARGET = 1.15; 

 ENDDATA 

!----------------------------------------------------; 

!  Min the var in portfolio return; 

  [OBJ] MIN  

      = @SUM( FACTOR( J):( SIGFAC( J) * Z( J))^2)  

      + @SUM( ASSET( I): ( SIGMA( I) * X( I))^2) ; 

! Compute portfolio betas; 

  @FOR( FACTOR( J): 

    Z( J) = @SUM( ASSET( I): BETA( I, J) * X( I)); 

      ); 

! Budget constraint; 

   @SUM( ASSET: X) = 1; 

! Return requirement; 

    @SUM( ASSET(  I): X( I )* ALPHA( I)) 

  + @SUM( FACTOR( J): Z( J) * RETF( J)) >= TARGET; 

 END 
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Part of the solution is: 

         Variable           Value      Reduced Cost 

           TARGET        1.150000         0.0000000 

          X( ATT)       0.5276550         0.0000000 

          X( GMC)       0.3736851         0.0000000 

          X( USX)       0.9865990E-01     0.0000000 

        Z( SP500)       0.8461882         0.0000000 

              Row    Slack or Surplus    Dual Price 

              OBJ       0.0229409         1.000000 

                2       0.0000000         0.3498846 

                3       0.0000000         0.3348567 

                4       0.0000000        -0.3310770 

 Notice the portfolio makeup is slightly different. However, the estimated variance of the portfolio 

is very close to our original portfolio. 

13.4.6 Scenario Model for Representing Uncertainty 
The scenario approach to modeling uncertainty assumes the possible future situations can be 

represented by a small number of “scenarios”. The smallest number used is typically three 

(e.g., “optimistic,” “most likely,” and “pessimistic”). Some of the original ideas underlying the 

scenario approach come from the approach known as stochastic programming; see Madansky (1962), 

for example. For a discussion of the scenario approach for large portfolios, see Markowitz and Perold 

(1981) and Perold (1984). For a thorough discussion of the general approach of stochastic 

programming, see Infanger (1992). Eppen, Martin, and Schrage (1988) use the scenario approach for 

capacity planning in the automobile industry. 

 Let: 

Ps  = Probability scenario s occurs, 

uis  = return of asset i if the scenario is s, 

Xi  = investment in asset i, 

Ys  = deviation of actual return from the mean if the scenario is s; 

      = i Xi( uis  q Pq uiq ). 

Our problem in algebraic form is: 

Minimize s Ps Ys
2
 

subject to 

Ys  i Xi(ui s  q Pq uiq) = 0 (deviation from mean of each scenario, s) 

i Xi = 1 (budget constraint) 

i Xi s Ps uis  r (desired return). 

If asset i has an inherent variability vi
2
, the objective generalizes to: 

Min i Xi
2 
vi

2
 + s PsYs

2
 

 The key feature is that, even though this formulation has a few more constraints, the covariance 

matrix is diagonal and, thus, very sparse. 
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 You will generally also want to put upper limits on what fraction of the portfolio is invested in 

each asset. Otherwise, if there are no upper bounds or inherent variabilities specified, the optimization 

will tend to invest in only as many assets as there are scenarios. 

13.4.7 Example: Scenario Model for Representing Uncertainty 
We will use the original data from Markowitz once again. We simply treat each of the 12 years as 

being a separate scenario, independent of the other 11 years. Because of the amount of data involved, it 

is convenient to use the ‘sets’ form of LINGO in the following model: 

MODEL: 

! Scenario portfolio model; 

SETS: 

  SCENE/1..12/: PRB, R, DVU, DVL; 

  ASSET/ ATT,  GMT,  USX/:  X; 

  SXI( SCENE, ASSET): VE; 

ENDSETS 

DATA: 

 TARGET = 1.15; 

! Data based on original Markowitz example; 

 VE = 

   1.300    1.225    1.149 

   1.103    1.290    1.260 

   1.216    1.216    1.419 

   0.954    0.728    0.922 

   0.929    1.144    1.169 

   1.056    1.107    0.965 

   1.038    1.321    1.133 

   1.089    1.305    1.732 

   1.090    1.195    1.021 

   1.083    1.390    1.131 

   1.035    0.928    1.006 

   1.176    1.715    1.908; 

! All scenarios considered to be equally likely; 

 PRB= .08333 .08333 .08333 .08333 .08333 .08333 

      .08333 .08333 .08333 .08333 .08333 .08333; 

ENDDATA 

! Target ending value; 

 [RET] AVG >= TARGET; 

! Compute expected value of ending position; 

    AVG = @SUM( SCENE: PRB * R); 

    @FOR( SCENE( S): 

! Measure deviations from average; 

      DVU( S) - DVL( S) = R(S) - AVG; 

! Compute value under each scenario; 

      R( S) = @SUM( ASSET( J): VE( S, J) * X( J))); 
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! Budget; 

 [BUD] @SUM( ASSET: X) = 1; 

 [VARI] VAR = @SUM( SCENE: PRB * ( DVU + DVL)^2); 

 [SEMIVARI] SEMIVAR = @SUM( SCENE: PRB * (DVL) ^2); 

 [DOWNRISK] DNRISK = @SUM( SCENE: PRB * DVL); 

! Set objective to VAR, SEMIVAR, or DNRISK; 

 [OBJ] MIN = VAR; 

END 

When solved, (part of) the solution is: 

Optimal solution found at step:         4 

Objective value:                0.2056007E-01 

Variable           Value        Reduced Cost 

 X( ATT)       0.5297389           0.0000000 

 X( GMT)       0.3566688           0.0000000 

 X( USX)       0.1135923           0.0000000 

     Row    Slack or Surplus      Dual Price 

     RET       0.0000000          -0.3246202 

     BUD       0.0000000           0.3321931 

     OBJ       0.2056007E-01        1.000000 

 The solution should be familiar. The alert reader may have noticed the solution suggests the same 

portfolio (except for round-off error) as our original model based on the covariance matrix (based on 

the same 12 years of data as in the above scenario model). This, in fact, is a general result. In other 

words, if the covariance matrix and expected returns are calculated directly from the original data by 

the traditional statistical formulae, then the covariance model and the scenario model, based on the 

same data, will recommend exactly the same portfolio. 

 The careful reader will have noticed the objective function from the scenario model (0.02056) is 

slightly less than that of the covariance model (.02241). The exceptionally perceptive reader may have 

noticed 12  0.02054597/11 is, except for round-off error, equal to 0.002241. The difference in 

objective value is a result simply of the fact that standard statistics packages tend to divide by N  1 

rather than N when computing variances and covariances, where N is the number of observations. 

Thus, a slightly more general statement is, if the covariance matrix is computed using a divisor of N 

rather than N  1, then the covariance model and the scenario model will give the same solution, 

including objective value. 
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13.5 Measures of Risk other than Variance 
The most common measure of risk is variance (or its square root, the standard deviation). This is a 

reasonable measure of risk for assets that have a symmetric distribution and are traded in a so-called 

“efficient” market. If these two features do not hold, however, variance has some drawbacks. Consider 

the four possible growth distributions in Figure 13.2. 

 Investments A, B, and C are equivalent according to the variance measure because each has an 

expected growth of 1.10 (an expected return of 10%) and a variance of 0.04 (standard deviation around 

the mean of 0.20). Risk-averse investors would, however, probably not be indifferent among the three. 

Under distribution (A), you would never lose any of your original investment, and there is a 0.2 

probability of the investment growing by a factor of 1.5 (i.e., a 50% return). Distribution (C), on the 

other hand, has a 0.2 probability of an investment decreasing to 0.7 of its original value (i.e., a negative 

30% return). Risk-averse investors would tend to prefer (A) most and to prefer (C) least. This 

illustrates variance need not be a good measure of risk if the distribution of returns is not symmetric: 

Figure 13.2 Possible Growth Factor Distributions 
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 Investment (D) is an inefficient investment. It is dominated by (A). Suppose the only investments 

available are (A) and (D) and our goal is to have an expected return of at least 5% (i.e., a growth factor 

of 1.05) and the lowest possible variance. The solution is to put 50% of our investment in each of (A) 

and (D). The resulting variance is 0.01 (standard deviation = 0.1). If we invested 100% in (A), the 

standard deviation would be 0.20. Nevertheless, we would prefer to invest 100% in (A). It is true the 

return is more random. However, our profits are always at least as high under every outcome. (If the 

randomness in profits is an issue, we can always give profits to a worthy educational institution when 

our profits are high to reduce the variance.) Thus, the variance objective may cause us to choose 

inefficient investments. 

 In active and efficient markets such as major stock markets, you will tend not to find investments 

such as (D) because investors will realize (A) dominates (D). Thus, the market price of (D) will drop 

until its return approaches competing investments. In investment decisions regarding new physical 

facilities, however, there are no strong market forces making all investment candidates “efficient”, so 

the variance risk measure may be less appropriate in such situations. 
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13.5.1 Value at Risk(VaR) 
In 1994, J.P. Morgan popularized the "Value at Risk" (VaR) concept with the introduction of their 

RiskMetrics™ system. To use VaR, you must specify two numbers: 1) an interval of time, typically 

one day or ten days, over which you are concerned about losing money, and 2) a probability threshold, 

typically 5% (or 1%), beyond which you care about harmful outcomes. VaR is then defined as that 

amount of loss in one day that has at most a 5% (or 1%) probability of being exceeded. A 

comprehensive survey of VaR is Jorion (2001).  Some of the popularity of VaR results from the fact 

that it is a method recommended as part of the Basel Accord for measuring the risk of the portfolios of 

European banks.  Banks must hold capital reserves proportional to their risk, e.g., as measured by VaR. 

Example 

Suppose that one day from now we think that our portfolio will have appreciated in value by $12,000. 

The actual value, however, has a Normal distribution with a standard deviation of $10,000. From a 

Normal table, we can determine that a left tail probability of 5% corresponds to an outcome that is 

1.644853 standard deviations below the mean. Now: 

12000 -1.644853 * 10000 = -4448.50. 

So, we would say that the value at risk is $4448.50. 

13.5.2 Example of VaR 
Let us apply the VaR approach to our standard example, the ATT/GMC/USC model. Suppose that our 

risk tolerance is 5% and we want to minimize the value at risk of our portfolio. This is equivalent to 

maximizing that threshold, so the probability our wealth is below this threshold is at most .05. 

Analysis: 

If the end-of-year portfolio value has a Normal distribution, then a left tail probability of 5% 

corresponds to a point that is 1.64485 standard deviations below the mean. Minimizing the value at 

risk corresponds to choosing the mean and standard deviation of the portfolio, so the ( mean – 1.64485 

* (standard deviation)) is maximized. The following model will do this: 

MODEL: ! Markowitz Value at Risk Portfolio Model(PORTVAR); 

 SETS: 

  STOCKS:  X, RET; 

  COVMAT(STOCKS, STOCKS): VARIANCE; 

 ENDSETS 

 DATA: 

  STOCKS  =    ATT        GMC      USX; 

!Covariance matrix and expected returns; 

  VARIANCE = .01080754 .01240721 .01307513     

             .01240721 .05839170 .05542639     

             .01307513 .05542639 .09422681 ; 

       RET = 1.0890833  1.213667  1.234583 ; 

    STARTW = 1.0;  ! How much we start with; 

       RHO = .05;! Risk tolerance, must be < .5; 

 ENDDATA 

!----------------------------------------------------------; 

! Get the s.d. corresponding to this risk threshold; 

    RHO = @PSN( Z); 

  @FREE( Z); 



Portfolio Optimization  Chapter 13     399 

! Maximize value not at risk; 

[VAR] Max = ARET + Z * SD; 

  ARET = @SUM( STOCKS:  X * RET) ;  

! The variance ( or SD^2) of the portfolio must be this large; 

  SD^2 >= @SUM( COVMAT(I, J):  X(I) *  X(J) * VARIANCE(I, J)); 

!  Use exactly 100% of the starting budget; 

[BUDGET] @SUM( STOCKS:  X) = STARTW; 

END 

With solution:  
 

  Global optimal solution found. 

  Objective value:                             0.9257590 

  Elapsed runtime seconds:                          0.16 

  Model is a second-order cone 

 

 Variable           Value        Reduced Cost 

      RHO        0.050000         0.0000000 

        Z       -1.644853         0.0000000 

     ARET        1.109300         0.0000000 

       SD        0.111585         0.0000000 

 X( ATT)        0.843034         0.0000000 

 X( GMC)        0.125330         0.0000000 

 X( USX)        0.031636         0.0000000 

RET( ATT)        1.089083         0.0000000 

RET( GMC)        1.213667         0.0000000 

RET( USX)        1.234583         0.0000000 

      Row    Slack or Surplus      Dual Price 

        1      -0.4163336E-16       -1.081707 

      VAR       0.9257590            1.000000 

        3      -0.2220446E-15        1.000000 

        4       0.0000000           -1.644853 

   BUDGET       0.0000000           0.9257590 

 Note that, if we invested solely in ATT, the portfolio variance would be .01080754. So, the 

standard deviation would be .103959, and the VAR would be 

1 - (1.089083 - 1.644853 * .103959) = .0818. 

 The portfolio is efficient because it is maximizing a weighted combination of the expected return 

and (a negatively weighted) standard deviation. Thus, if there is a portfolio that has both higher 

expected return and lower standard deviation, then the above solution would not maximize the 

objective function above. 

 Note, if you use a risk tolerance:  RHO = .1988, then you get essentially the original portfolio 

considered for the ATT/GMC/USX problem. 

 There are two things to note about the heading of the solution report: 1) The solution is labelled 

with the heading “Global optimal solution found” and 2) the model type is described as “second-order 

cone.  The constraint  
    SD^2 >= @SUM( COVMAT(I, J):  X(I) *  X(J) * VARIANCE(I, J)); 

is a form of what is called a second-order cone constraint, or SOC for short. LINGO is able to identify 

such constraints, and if all the constraints are either linear or second-order cone constraints, then 

LINGO can solve large problems of that type fast and solve them to a global, not just local optimum. 
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13.5.3 VaR Anomalies 
If you want just a single number to describe risk, VaR is a useful, easy to understand metric.  You 

should not, however, use VaR without considering its anomalous features.  The most obvious criticism 

of VaR is that it gives attention to only one percentile point of the portfolio return distribution.  It does 

not pay attention to how really bad a low probability event might be. Two portfolios P1 and P2 may 

each have a probability of at most 5% of losing $1M or more, so the VaR is the same for them.  

Suppose, however, that P1 has a probability of 5% of losing exactly $1M and no more, whereas P2 has 

a probability of 1% of losing exactly $1M and a probability of 4% of losing $10M.  Most people would 

consider P2 as the riskier one. This “narrow-mindedness” of VaR leads to several questionable 

features:  a) [Good News anomaly] If we change a parameter of a candidate investment for our 

portfolio so that the investment now pays off more, then a VaR objective may suggest that we invest 

less in that investment after the change; b) [Diversification is Bad anomaly] If bank 1, with portfolio 

X1 takes over bank 2 with its portfolio X2, then we may find that VaR(X1 + X2) > VaR(X1) + 

VaR(X2), i.e., diversification may appear to increase risk according to the VaR measure. 

 We first illustrate anomally (a) above. A very conservative investor might react to risk by 

maximizing the minimum return over scenarios.  This is equivalent to the VaR approach in which we 

set the risk tolerance to arbitrarily close to 0.  There are some curious implications from this. Suppose 

the only investments available are A and C above and the two scenarios are: 

Scenario Probability Payoff from A Payoff from C 

1 0.8 1.0 1.2 

2 0.2 1.5 0.7 

 If we wish to maximize the minimum possible wealth, the probability of a scenario does not 

matter, as long as the probability is positive. Thus, the following LP is appropriate: 

  MAX = WMIN; 
!  Initial budget constraint; 

               A +       C = 1; 

!  Wealth under scenario 1; 

- WMIN +       A + 1.2 * C >= 0; 

!  Wealth under scenario 2; 

- WMIN + 1.5 * A + 0.7 * C >= 0; 

 

The solution is: 

Objective value:                 1.100000 

Variable           Value        Reduced Cost 

    WMIN        1.100000           0.0000000 

       A       0.5000000           0.0000000 

       C       0.5000000           0.0000000 

 Given that both investments have an expected return of 10%, it is not surprising the expected 

growth factor is 1.10. That is, a return of 10%. The possibly surprising thing is there is no risk. 

Regardless of which scenario occurs, the $1 initial investment will grow to $1.10 if 50 cents is placed 

in each of A and C. 
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 Now, suppose an extremely reliable friend provides us with the interesting news that, “if scenario 

1 occurs, then investment C will payoff 1.3 rather than 1.2”. This is certainly good news. The expected 

return for C has just gone up, and its downside risk has certainly not gotten worse. How should we 

react to it? We make the obvious modification in our model: 

MAX = WMIN; 

!  Initial budget constraint; 

               A +       C = 1; 

!  Wealth under scenario 1; 

- WMIN +       A + 1.3 * C > 0; 

!  Wealth under scenario 2; 

- WMIN + 1.5 * A + 0.7 * C > 0; 

 

and re-solve it to find: 

Objective value:                 1.136364 

Variable           Value        Reduced Cost 

    WMIN        1.136364           0.0000000 

       A       0.5454545           0.0000000 

       C       0.4545455           0.0000000 

 This is a bit curious. We have decreased our investment in C. This is as if our friend had continued 

on: “I have this very favorable news regarding stock C. Let’s sell it before the market has a chance to 

react”. Why the anomaly? The problem is we are basing our measure of goodness on a single point 

among the possible payoffs. In this case, it is the worst possible. For a further discussion of these 

issues, see Clyman (1995). 

 Now let’s illustrate feature (b), the “Diversification is Bad anomaly”.  Suppose that both portfolios 

X1 and X2 have a beginning wealth of 100 and have independent, identically distributed distributions 

of ending wealth, w,  of Prob{w = 80} = .04, and Prob{w = 110} = .96.  Thus, at a risk tolerance of 

5%, both portfolios have a VaR = 0,  i.e., the probability of losing 0 money or more is less than or 

equal to 5%.  If the two portfolios are combined, the beginning value is 200, and the possible ending 

values and probabilities are Prob{w = 160} = .0016;  Prob{w = 190} = .0768; and Prob{w = 220} = 

.9216.  Now the VaR at the 5% level is 200 – 190 = 10.  The VaR of the merged bank is greater than 

the sum of the VaRs of the individual banks.  The amount of safety capital the two banks would have 

to carry would be greater in total after the merger according to VaR rules. 

13.5.4 Conditional Value at Risk(CVaR) 
We saw that a weakness of VaR is that it does not pay attention to how bad a low probability event can 

be.  CVaR, see Palmquist, Uryasev, and Krokhmal(2002),  corrects this deficiency.  Once again, 

suppose portfolio P1 has a probability of 5% of losing exactly $1M and no more, whereas P2 has a 

probability of 1% of losing exactly $1M and a probability of 4% of losing $10M.  According to VaR, 

we would be indifferent between P1 and P2 because at the 5% risk tolerance, they both have a VaR of 

$1M.  Conditional Value at Risk(CVaR) explicitly takes into account the amount by which the loss 

exceeds the VaR threshold.  Similar to VaR,  CVaR requires us to specify a risk tolerance , e.g., 5%.  

Optionally, we may specify an expected return preference  ≥ 0.  If the random variable w is the final 

wealth of the portfolio,  then CVaR chooses a portfolio and VaR threshold, t, so as to maximize a 

weighted combination of: the final portfolio value, the VaR value, and minus the expected amount by 

which the final portfolio falls short of the VaR target.  Algebraically, the CVaR objective is:  

                Max  E(w) +   t – E(max[0, t – w]). 
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The variable t should not appear in any other constraints. It is fairly easy to show that at an optimum, t 

will have the feature that Prob{w < t}    Prob{w  t}. That is, for the optimal portfolio, its VaR will 

be:  initial wealth – t.  The following model illustrates the determination of a CVaR portfolio: 

 
MODEL: 

! Scenario portfolio model; 

! Minimize the Conditional Value at Risk; 

 SETS: 

  SCENE: PRB, W, DVU, DVL; 

  ASSET:  X; 

  SXI( SCENE, ASSET): VE; 

 ENDSETS 

DATA: 

 RHO = .1; ! Risk tolerance; 

 ALPHA = 0; 

 TARGET = 1.15; 

 SCENE = 1..12; 

 ASSET = 

    ATT     GMC      USX; 

! Data based on original Markowitz example; 

VE = 

   1.300    1.225    1.149 

   1.103    1.290    1.260 

   1.216    1.216    1.419 

   0.954    0.728    0.922 

   0.929    1.144    1.169 

   1.056    1.107    0.965 

   1.038    1.321    1.133 

   1.089    1.305    1.732 

   1.090    1.195    1.021 

   1.083    1.390    1.131 

   1.035    0.928    1.006 

   1.176    1.715    1.908; 

! All scenarios happen to be equally likely; 

 PRB= .0833333 .0833333 .0833333 .0833333 .0833333 

      .0833333 .0833333 .0833333 .0833333 .0833333 

      .0833333 .0833333; 

ENDDATA 

! Compute portfolio value under each scenario; 

  @FOR(SCENE(S):W(S) = @SUM(ASSET(J):VE(S,J) * X(J)); 

! Measure deviations from CVaR target T; 

     DVL( S) - DVU( S) = T - W(S) ; 

      ); 

! Budget; 

 [BUD] @SUM( ASSET(i): X(i)) = 1; 

! Compute expected value of ending position;  

 [DEFAVG] AVG = @SUM( SCENE(s): PRB(s) * W(s)); 

! Ending value >= target ; 

 [RET] AVG >= TARGET; 

! Minimize conditional value at risk; 

 [OBJ] MAX = ALPHA*AVG + RHO*T - @SUM( SCENE(s): PRB(s)* DVL(s)); 

END 
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Part of the solution is: 
 

  Objective value:    0.09534855 

 

             Variable           Value 

                  RHO       0.1000000 

                ALPHA        0.000000 

               TARGET        1.150000 

                    T        1.017901 

                  AVG        1.150000 

                W( 1)        1.236780 

                W( 2)        1.168732 

                W( 3)        1.300991 

                W( 4)        0.940602 

                W( 5)        1.029482 

                W( 6)        1.017901 

                W( 7)        1.077774 

                W( 8)        1.358208 

                W( 9)        1.061111 

               W( 10)        1.103096 

               W( 11)        1.022858 

               W( 12)        1.482470 

              X( ATT)        0.581326 

              X( GMC)        0.000000 

              X( USX)        0.418674 

 

The initial value of this portfolio was 1, so the VaR of this portfolio is 1 – T = -.017901.  There are 12 

scenarios.  Notice that in only 1 of the 12, scenario 4, is the final wealth less than T = 1.017901.  Thus, 

in 1 outcome out of 12, or less than 10% of the outcomes, would the final value be less than 1.017901. 

13.6 Scenario Model and Minimizing Downside Risk 
Minimizing the variance in return is appropriate if either:  

1) the actual return is Normal-distributed or  

2) the portfolio owner has a quadratic utility function.  

 In practice, it is difficult to show either condition holds. Thus, it may be of interest to use a more 

intuitive measure of risk. One such measure is the downside risk, which intuitively is the expected 

amount by which the return is less than a specified target return. The approach can be described if we 

define: 

T = user specified target threshold. When risk is disregarded, this is typically less than the 

maximum expected return and greater than the return under the worst scenario. 

Ys = amount by which the return under scenario s falls short of target. 

    = max{0, T   Xi uis} 
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The model in algebraic form is then: 

Min  Ps Ys                       ! Minimize expected downside risk 

subject to 

(compute deviation below target of each scenario, s): 

Ys  T +  Xi  uis  0 

 Xi = 1                              (budget constraint) 

 Xi  Ps  uis  r                      (desired return). 

Notice this is just a linear program. 

13.6.1 Semi-variance and Downside Risk 
The most common alternative suggested to variance as a measure of risk is some form of downside 

risk. One such measure is semi-variance. It is essentially variance, except only deviations below the 

mean are counted as risk. The scenario model is well suited to such measures. The previous scenario 

model needs only a slight modification to convert it to a semi-variance model. The Y variables are 

redefined to measure the deviation below the mean only, zero otherwise. The resulting model is: 

MODEL: 

! Scenario portfolio model; 

! Minimize the semi-variance; 

 SETS: 

  SCENE/1..12/: PRB, R, DVU, DVL; 

  ASSET/ ATT,  GMT,  USX/:  X; 

  SXI( SCENE, ASSET): VE; 

 ENDSETS 

DATA: 

 TARGET = 1.15; 

! Data based on original Markowitz example; 

VE = 

   1.300    1.225    1.149 

   1.103    1.290    1.260 

   1.216    1.216    1.419 

   0.954    0.728    0.922 

   0.929    1.144    1.169 

   1.056    1.107    0.965 

   1.038    1.321    1.133 

   1.089    1.305    1.732 

   1.090    1.195    1.021 

   1.083    1.390    1.131 

   1.035    0.928    1.006 

   1.176    1.715    1.908; 

! All scenarios happen to be equally likely; 

 PRB= .0833333 .0833333 .0833333 .0833333 .0833333 

      .0833333 .0833333 .0833333 .0833333 .0833333 

      .0833333 .0833333; 

ENDDATA 

! Compute value under each scenario; 

  @FOR(SCENE(S):R(S) = @SUM(ASSET(J):VE(S,J) * X(J)); 

! Measure deviations from average; 

      DVU( S) - DVL( S) = R(S) - AVG;); 
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! Budget; 

 [BUD] @SUM( ASSET: X) = 1; 

! Compute expected value of ending position; 

 [DEFAVG] AVG = @SUM( SCENE: PRB * R); 

! Target ending value; 

 [RET] AVG > TARGET; 

! Minimize the  semi-variance; 

 [OBJ] MIN = @SUM( SCENE: PRB * DVL^2); 

END  

The resulting solution is: 

Optimal solution found at step:         4 

Objective value:                0.8917110E-02 

Variable           Value        Reduced Cost 

   R( 1)        1.238875           0.0000000 

   R( 2)        1.170760           0.0000000 

   R( 3)        1.294285           0.0000000 

   R( 4)       0.9329399           0.0000000 

   R( 5)        1.029848           0.0000000 

   R( 6)        1.022875           0.0000000 

   R( 7)        1.085554           0.0000000 

   R( 8)        1.345299           0.0000000 

   R( 9)        1.067442           0.0000000 

  R( 10)        1.113355           0.0000000 

  R( 11)        1.019688           0.0000000 

  R( 12)        1.479083           0.0000000 

 DVU( 1)       0.8887491E-01       0.0000000 

 DVU( 2)       0.2076016E-01       0.0000000 

 DVU( 3)       0.1442846           0.0000000 

 DVU( 4)       0.0000000           0.3617666E-01 

 DVU( 5)       0.0000000           0.2002525E-01 

 DVU( 6)       0.0000000           0.2118756E-01 

 DVU( 7)       0.0000000           0.1074092E-01 

 DVU( 8)       0.1952993           0.0000000 

 DVU( 9)       0.0000000           0.1375965E-01 

DVU( 10)       0.0000000           0.6107114E-02 

DVU( 11)       0.0000000           0.2171863E-01 

DVU( 12)       0.3290833           0.0000000 

 DVL( 1)       0.0000000           0.8673617E-09 

 DVL( 2)       0.0000000           0.8673617E-09 

 DVL( 3)       0.0000000           0.8673617E-09 

 DVL( 4)       0.2170601           0.0000000 

 DVL( 5)       0.1201515           0.0000000 

 X( ATT)       0.5757791           0.0000000 

 X( GMT)       0.3858243E-01       0.0000000 

 X( USX)       0.3856385           0.0000000 

     Row    Slack or Surplus      Dual Price 

     BUD       0.0000000           0.1198420 

  DEFAVG       0.0000000          -0.9997334E-02 

     RET       0.0000000          -0.1197184 

     OBJ       0.8917110E-02        1.000000 
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 Notice the objective value is less than half that of the variance model. We would expect it to be at 

most half, because it considers only the down (not the up) deviations. The most noticeable change in 

the portfolio is substantial funds have been moved to USX from GMC. This is not surprising if you 

look at the original data. In the years in which ATT performs poorly, USX tends to perform better than 

GMC. 

13.6.2 Downside Risk and MAD 
If the threshold for determining downside risk is the mean return, then minimizing the downside risk is 

equivalent to minimizing the mean absolute deviation (MAD) about the mean. This follows easily 

because the sum of deviations (not absolute) about the mean must be zero. Thus, the sum of deviations 

above the mean equals the sum of deviations below the mean. Therefore, the sum of absolute 

deviations is always twice the sum of the deviations below the mean. Thus, minimizing the downside 

risk below the mean gives exactly the same recommendation as minimizing the sum of absolute 

deviations below the mean. Konno and Yamazaki (1991) use the MAD measure to construct portfolios 

from stocks on the Tokyo stock exchange. 

13.6.3 Scenarios Based Directly Upon a Covariance Matrix 
If only a covariance matrix is available, rather than original data, then, not surprisingly, it is 

nevertheless possible to construct scenarios that match the covariance matrix. The following example 

uses just four scenarios to represent the possible returns from the three assets: ATT, GMC, and USX. 

These scenarios have been constructed, using the methods of section 12.8.2, so they mimic behavior 

consistent with the original covariance matrix: 

MODEL: 

SETS: 

! Each asset has a variable value and an average return; 

 ASSET:  X, RET; 

! the variance of return at each scenario (which can be negative), 

and the probability of it happening; 

 SCEN: Y, P; 

! Return for each asset under each scenario; 

 COVMAT( SCEN, ASSET):ENTRY; 

ENDSETS 

DATA:  

  P = .25 .25 .25 .25; ! Four equi-likely scenarios; 

 ASSET =   ATT      GMC      USX; 

 ENTRY = .9851237 1.304437  1.097669 

        1.193042  1.543131  1.756196 

         .9851237  .8842088 1.119948 

        1.193042  1.122902   .9645076; 

  RET = 1.089083  1.213667  1.234583; 

ENDDATA 

! Minimize the variance; 

MIN = @SUM( SCEN(s): Y(s) * Y(s) * P(s)); 

!  Compute the deviation from mean under each scenario; 

@FOR(SCEN(s):Y(s) = @SUM(ASSET(J): ENTRY(s,J)* X(J)) - MEAN  

    ); 

! The Budget constraint; 

@SUM(ASSET(j):  X(j)) = 1; 

! Define or compute the mean; 



Portfolio Optimization  Chapter 13     407 

@SUM(ASSET(j):  X * RET) = MEAN; 

MEAN > 1.15;! Target return; 

! The variance of each return can be negative; 

@FOR(SCEN: @FREE(Y)); 

END 

When solved, we get the familiar solution: 

Optimal solution found at step:         4 

Objective value:                0.2241380E-01 

      Variable           Value      Reduced Cost 

          MEAN        1.150000         0.0000000 

       X( ATT)       0.5300912         0.0000000 

       X( GMC)       0.3564126         0.0000000 

       X( USX)       0.1134962         0.0000000 

     RET( ATT)        1.089083         0.0000000 

     RET( GMC)        1.213667         0.0000000 

     RET( USX)        1.234583         0.0000000 

         Y( 1)      -0.3829557E-01     0.0000000 

         Y( 2)       0.2317340         0.0000000 

         Y( 3)      -0.1855416         0.0000000 

         Y( 4)      -0.7894565E-02     0.0000000 

         P( 1)       0.2500000         0.0000000 

         P( 2)       0.2500000         0.0000000 

         P( 3)       0.2500000         0.0000000 

         P( 4)       0.2500000         0.0000000 

ENTRY( 1, ATT)       0.9851237         0.0000000 

ENTRY( 1, GMC)        1.304437         0.0000000 

ENTRY( 1, USX)        1.097669         0.0000000 

ENTRY( 2, ATT)        1.193042         0.0000000 

ENTRY( 2, GMC)        1.543131         0.0000000 

ENTRY( 2, USX)        1.756196         0.0000000 

ENTRY( 3, ATT)       0.9851237         0.0000000 

ENTRY( 3, GMC)       0.8842088         0.0000000 

ENTRY( 3, USX)        1.119948         0.0000000 

ENTRY( 4, ATT)        1.193042         0.0000000 

ENTRY( 4, GMC)        1.122902         0.0000000 

ENTRY( 4, USX)       0.9645076         0.0000000 

           Row    Slack or Surplus    Dual Price 

             1       0.2241380E-01      1.000000 

             2       0.0000000         0.1914778E-01 

             3       0.0000000        -0.1158670 

             4       0.0000000         0.9277079E-01 

             5       0.0000000         0.3947280E-02 

             6       0.0000000         0.3621391 

             7       0.0000000        -0.3538852 

             8       0.0000000          -0.3538841 

 Notice the objective function value and the allocation of funds over ATT, GMC, and USX are 

essentially identical to our original portfolio example. 
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13.7 Hedging, Matching and Program Trading 

13.7.1 Portfolio Hedging 
Given a “benchmark” portfolio B, we say we hedge B if we construct another portfolio C such that, 

taken together, B and C have essentially the same return as B, but lower risk than B. Typically, our 

portfolio B contains certain components that cannot be removed. Thus, we want to buy some 

components negatively correlated with the existing ones. Examples are:  

a) An airline knows it will have to purchase a lot of fuel in the next three months. It would like 

to be insulated from unexpected fuel price increases.  

b) A farmer is confident his fields will yield $200,000 worth of corn in the next two months. He 

is happy with the current price for corn. Thus, would like to “lock in” the current price. 

13.7.2 Portfolio Matching, Tracking, and Program Trading 
Given a benchmark portfolio B, we say we construct a matching or tracking portfolio if we construct a 

new portfolio C that has stochastic behavior very similar to B, but excludes certain instruments in B. 

Example situations are:  

a) A portfolio manager does not wish to look bad relative to some well-known index of 

performance such as the S&P 500, but for various reasons cannot purchase certain 

instruments in the index.  

b) An arbitrageur with the ability to make fast, low-cost trades wants to exploit market 

inefficiencies (i.e., instruments mispriced by the market). If he can construct a portfolio that 

perfectly matches the future behavior of the well-defined portfolio, but costs less today, then 

he has an arbitrage profit opportunity (if he can act before this “mispricing” disappears).  

c) A retired person is concerned mainly about inflation risk. In this case, a portfolio that tracks 

inflation is desired.  

 As an example of (a), a certain so-called “green” mutual fund will not include in its portfolio 

companies that derive more than 2% of their gross revenues from the sale of military weapons, own 

directly or operate nuclear power plants, or participate in business related to the nuclear fuel cycle. 

 The following table, for example, compares the performance of six Vanguard portfolios with the 

indices the portfolios were designed to track; see Vanguard (1995): 

Total Return Six Months Ended June 30, 1995 

Vanguard Portfolio Comparative Index 
Portfolio Name Growth Growth Index Name 

500 Portfolio +20.1% +20.2% S&P500 

Growth Portfolio +21.1 +21.2 S&P500/BARRA Growth 

Value Portfolio +19.1 +19.2 S&P500/BARRA Value 

Extended Market Portfolio +17.1% +16.8% Wilshire 4500 Index 

SmallCap Portfolio +14.5 +14.4 Russell 2000 Index  

Total Stock Market 

Portfolio 

+19.2% +19.2% Wilshire 5000 Index  

 Notice, even though there is substantial difference in the performance of the portfolios, each 

matches its benchmark index quite well. 
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13.8 Methods for Constructing Benchmark Portfolios 
A variety of approaches has been used for constructing hedging and matching portfolios. For matching 

portfolios, an intuitive approach has been to generalize the Markowitz model, so the objective is to 

minimize the variance in the difference in return between the target portfolio and the tracking portfolio.  

 A useful way to think about hedging or matching of a benchmark is to think of it as our being 

forced to include the benchmark or its negative in our portfolio. Suppose the benchmark is a simple 

index such as the S&P500. If our measure of risk is variance, then proceed as follows: 

1. Include the benchmark in the covariance matrix just like any other instrument, except do 

not include it in the budget constraint. We presume we have a budget of $1 to invest in 

the controllable, non-benchmark portion of our portfolio. 

2. To get a “matching” portfolio (e.g., one that mimics the S&P 500), set the value of the 

benchmark factor to 1. The essential effect is the off diagonal covariance terms are 

negated in the row/column of the benchmark factor. Effectively, we have shorted the 

factor. If we can get the total variance to zero, we have perfectly matched the randomness 

of the benchmark. 

3. To get a “hedging” portfolio (e.g., one as negatively correlated with the S&P 500 as 

possible), set the value of the benchmark factor to +1. Thus, we will compose the rest of 

the portfolio to counteract the effect of the factor we are stuck with having in the 

portfolio. 

 One might even want to drop the budget constraint. The solution will then tell you how much to 

invest in the controllable portfolio to get the best possible hedge or match per $ of the benchmark. 
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 The following model illustrates the extension of the Markowitz approach to the hedging case 

where we want to “cancel out” some benchmark. In the case of GMC, it could be that our decision 

maker works for GMC and thus has his fortunes unavoidably tied to those of GMC. He might wish to 

find a portfolio negatively correlated with GMC: 

MODEL: 

!Generic Markowitz portfolio Hedging model(PORTHEDG); 

! We want to hedge the first or "benchmark" asset 

  with the remaining ones; 

 SETS: 

  ASSET/ GMC  ATT  USX/: RET, X; 

  TMAT( ASSET, ASSET) | &1 #GE# &2: COV; 

 ENDSETS 

 DATA: 

! The expected returns; 

   RET = 1.21367,   1.089083,   1.23458; 

! Covariance matrix; 

   COV = 

         .05839170 

         .01240721  .01080754 

         .05542639  .01307513  .09422681; 

 ! The desired return; 

   TARGET = 1.15; 

 ENDDATA 

!-------------------------------------------------; 

!  Min the var in portfolio return; 

 [OBJ] MIN= ( @SUM( ASSET( I): 

                   COV( I, I) * X( I)^2) + 

         2 * @SUM( TMAT( I, J) | I #NE# J: 

                COV( I, J) * X( I) * X( J))) ; 

!We are stuck with the first asset in the portfolio; 

 X( 1) = 1; 

!  Budget constraint(applies to remaining assets); 

 [BUDGET] @SUM( ASSET( I)| I #GT# 1: X( I)) = 1; 

!  Return requirement(applies to remaining assets); 

 [RETURN] @SUM( ASSET( I)| I #GT# 1: 

                 RET( I) * X( I)) >= TARGET; 

END 

The solution is: 

Optimal solution found at step:         4 

Objective value:                0.1457632 

Variable           Value        Reduced Cost 

 X( GMC)        1.000000           0.0000000 

 X( ATT)       0.5813178           0.0000000 

 X( USX)       0.4186822           0.0000000 

 Thus, our investor puts more of the portfolio in ATT than in USX (whose fortunes are more closely 

tied to those of GMC). 
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 The following model illustrates the extension of the Markowitz approach to the matching case 

where we want to construct a portfolio that mimics or matches a benchmark portfolio. In this case, we 

want to match the S&P500, but limit ourselves to investing in only ATT, GMC, and USX: 

MODEL: 

!Gen. Markowitz portfolio Matching model(PORTMTCH); 

! We want to match the first or "benchmark" asset 

  with the remaining ones; 

 SETS: 

  ASSET/ SP500 ATT GMC  USX/: RET, X; 

  TMAT( ASSET, ASSET) | &1 #GE# &2: COV; 

 ENDSETS 

 DATA: 

! The expected returns; 

   RET = 1.191458  1.089083, 1.21367, 1.23458; 

! Covariance matrix; 

   COV = 

     .02873661 

     .01266498   .01080754 

     .03562763   .01240721   .05839170 

     .04378880   .01307513   .05542639   .09422681; 

 ! The desired return; 

   TARGET = 1.191458; 

 ENDDATA 

!-------------------------------------------------; 

!  Min the var in portfolio return; 

 [OBJ] MIN = (@SUM( ASSET(I): COV(I, I) * X( I)^2) 

         + 2 * @SUM( TMAT( I, J) | I #NE# J: 

                     COV( I, J) * X( I) * X( J))) ; 

!Matching is equivalent to being short the benchmark; 

   X( 1) = -1; 

   @FREE( X( 1)); 

!  Budget constraint(applies to remaining assets); 

 [BUDGET] @SUM( ASSET( I)| I #GT# 1: X( I)) = 1; 

!  Return requirement(applies to remaining assets); 

 [RETURN] @SUM( ASSET( I)| I #GT# 1: 

                       RET( I) * X( I)) >= TARGET; 

END 

The solution is: 

Optimal solution found at step:         4 

Objective value:                0.5245968E-02 

 Variable           Value        Reduced Cost 

X( SP500)       -1.000000           0.0000000 

  X( ATT)       0.2276635           0.0000000 

  X( GMC)       0.4781277           0.0000000 

  X( USX)       0.2942089          -0.1266506E-07 
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13.8.1 Scenario Approach to Benchmark Portfolios 

If we use the scenario approach, then the hedging model looks as follows: 

MODEL:     ! (PRTSHDGE); 

! Scenario portfolio model, Hedge 1st asset; 

! Minimize the variance; 

 SETS: 

  SCENE/1..12/: PRB, R, DVU, DVL; 

  ASSET/  GMT, ATT,  USX/:  X; 

  SXA( SCENE, ASSET): VE; 

 ENDSETS 

 DATA: 

! Data based on original Markowitz example; 

 VE = 

   1.225   1.300    1.149 

   1.290   1.103    1.260 

   1.216   1.216    1.419 

   0.728   0.954    0.922 

   1.144   0.929    1.169 

   1.107   1.056    0.965 

   1.321   1.038    1.133 

   1.305   1.089    1.732 

   1.195   1.090    1.021 

   1.390   1.083    1.131 

   0.928   1.035    1.006 

   1.715   1.176    1.908; 

! All scenarios happen to be equally likely; 

 PRB= .0833333 .0833333 .0833333 .0833333 .0833333  

      .0833333 .0833333 .0833333 .0833333 .0833333  

      .0833333 .0833333; 

! The desired return; 

   TARGET = 1.15; 

ENDDATA 

! Minimize risk; 

 [OBJ] MIN = @SUM( SCENE: PRB * ( DVL + DVU) ^ 2); 

!We are stuck with having asset 1 in the portfolio; 

  X( 1) = 1; 

!Compute hedging portfolio value under each scenario; 

  @FOR( SCENE( S): 

    R( S)= 

     @SUM( ASSET( J)| J #GT# 1: VE( S, J) * X( J)); 

! Measure deviations hedge + benchmark from target; 

      DVU( S) - DVL( S) =  

          ( R(S) + VE( S, 1))/ 2 - TARGET; 

   ); 

!  Budget constraint(applies to remaining assets); 

 [BUDGET] @SUM( ASSET( J)| J #GT# 1: X( J)) = 1; 

! Compute expected value of ending position; 

 [DEFAVG] AVG = @SUM( SCENE: PRB * R); 

! Target ending value; 

 [RET] AVG > TARGET; 

END 
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With a solution: 

Optimal solution found at step:         4 

Objective value:                0.3441714E-01 

Variable           Value        Reduced Cost 

 X( GMT)        1.000000           0.0000000 

 X( ATT)       0.5813256           0.0000000 

 X( USX)       0.4186744           0.0000000 

Notice we get the same portfolio as with the Markowitz model. 

 A scenario model for constructing a portfolio matching the S&P500 looks as follows: 

  MODEL: 
  ! Scenario  model, Match 1st asset(PRTSMTCH); 

  ! Minimize the variance; 

   SETS: 

    SCENE/1..12/: PRB, R, DVU, DVL; 

    ASSET/ SP500  ATT  GMT  USX/:  X; 

    SXA( SCENE, ASSET): VE; 

   ENDSETS 

  DATA: 

  ! Data based on original Markowitz example; 

   VE = 

  !  S&P500   ATT    GMC    USX; 

   1.258997    1.3  1.225  1.149 

   1.197526  1.103  1.29   1.26 

   1.364361  1.216  1.216  1.419 

   0.919287  0.954  0.728  0.922 

    1.05708  0.929  1.144  1.169 

   1.055012  1.056  1.107  0.965 

   1.187925  1.038  1.321  1.133 

   1.31713   1.089  1.305  1.732 

   1.240164  1.09   1.195  1.021 

   1.183675  1.083  1.39   1.131 

   0.990108  1.035  0.928  1.006 

   1.526236  1.176  1.715  1.908;  

  ! All scenarios happen to be equally likely; 

  PRB= .0833333 .0833333 .0833333 .0833333 .0833333  

       .0833333 .0833333 .0833333 .0833333 .0833333       

       .0833333 .0833333; 

  ! The desired return; 

     TARGET = 1.191458; 

  ENDDATA 

  ! Minimize risk; 

  [OBJ] MIN = @SUM( SCENE: PRB * ( DVL + DVU) ^ 2); 

  ! Compute portfolio value under each scenario; 

    @FOR( SCENE( S): 

     R( S) =  

     @SUM( ASSET( J)| J #GT# 1: VE( S, J) * X( J)); 

  ! Measure deviations of portfolio from benchmark; 

        DVU( S) - DVL( S) = ( R(S) - VE( S, 1)); 

     ); 

  ! Budget constraint(applies to remaining assets); 

   [BUDGET] @SUM( ASSET( J)| J #GT# 1: X( J)) = 1; 
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  ! Compute expected value of ending position; 

   [DEFAVG] AVG = @SUM( SCENE: PRB * R); 

  ! Target ending value; 

   [RET] AVG > TARGET; 

  END 

The solution is: 

Optimal solution found at step:         7 

Objective value:                0.4808974E-02 

 Variable           Value        Reduced Cost 

X( SP500)       0.0000000           0.0000000 

  X( ATT)       0.2276583           0.0000000 

  X( GMT)       0.4781151           0.0000000 

  X( USX)       0.2942266           0.0000000 

Notice we get the same portfolio as with the Markowitz model. 

 The two scenario models both used variance for the measure of risk relative to the benchmark. It is 

easy to modify them, so more asymmetric risk measures, such as downside risk, could be used. 

13.8.2 Efficient Benchmark Portfolios 
We say a portfolio is on the efficient frontier if there is no other portfolio that has both higher expected 

return and lower risk. 

 Let: 

ri  = expected return on asset i, 

t  = an arbitrary target return for the portfolio. 

 A portfolio, with weight mi on asset i, is efficient if there exists some target t for which the 

portfolio is a solution to the problem: 

Minimize    risk 

subject to 

i

n




0

mi = 1       (budget constraint) 

i

m




0
ri mi  t     (return target constraint). 

 Portfolio managers are frequently evaluated on their performance relative to some benchmark 

portfolio. Let bi = the weight on asset i in the benchmark portfolio. If the benchmark portfolio is not on 

the efficient frontier, then an interesting question is: What are the weights of the portfolio on the 

efficient frontier that is closest to the benchmark portfolio in the sense that the risk of the efficient 

portfolio relative to the benchmark is minimized? 
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 There is a particularly simple answer when the measure of risk is portfolio variance, there is a 

risk-free asset, borrowing is allowed at the risk-free rate, and short sales are permitted. Let m0 = the 

weight on the risk-free asset. An elegant result, in this case, is that there is a so-called “market” 

portfolio with weights mi on asset i, such that effectively only m0 varies as the return target varies. 

Specifically, there are constants mi, for i = 1, 2, . . . , n, such that the weight on asset i is simply (1  m0)   

mi. Define: 

q = 1  m0 = weight to put on the market portfolio, 

Ri = random return on asset i. 

Then the variance of any efficient portfolio relative to the benchmark portfolio can be written as: 

var( 
i

n




1
Ri[qmi  bi]) 

=       
i

n




1

 (qmi  bi)
2
 var (Ri) + 2 

 j 


i

 (qmi  bi)(qm j  bj) Cov(Ri,R j). 

Setting the derivative of this expression with respect to q equal to zero gives the result: 

q =  
i

n




1

mi bi var (Ri) + 
 j 


i
 (mi bj mj bi) Cov (Ri, R j) 

____________________________________________________________________________________________________________________________ 

i

n




1

mi
2
 var (Ri) + 2

 
 j 


i
mi mj Cov (Ri, Rj) 

 
 For example, if the benchmark portfolio is on the efficient frontier with weight b0 on the risk-free 

asset, then bi = (1  b0)mi and therefore q = 1  b0. 

 Thus, a manager who is told to outperform the benchmark portfolio {b0, b1, . . ., bn} should 

perhaps, in fact, be compensated according to his performance relative to the efficient portfolio given 

by q above. 

13.8.3 Efficient Formulation of Portfolio Problems 
The amount of time it takes to solve a mathematical model may depend dramatically on how the model 

is formulated. This phenomenon is well known in integer programming circles. Below, we illustrate 

the same phenomenon for nonlinear programs. We give several different, but mathematically 

equivalent, formulations of a portfolio optimization model. 

Formulation 1 

Minimize 
j

n

i

n




11

qij xi xj 

subject to 

 j

n




1
xj = 1 

 j

n




1
rj xj = r0 
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Formulation 2 

We can exploit the fact that the covariance matrix is symmetric to rewrite the objective as: 

Min 
i

n




1

xi (qii xi + 2 
 j=i+1

n

 qij xj ) 

subject to 

 j

n




1

xj = 1 

 j

n




1

rj xj = r0 

Formulation 3 

We can separately compute the term multiplying xi in the objective to get the formulation: 

Minimize 
i

n




1
xi wi 

subject to 

For each i; 

wi = qii xi + 2
 j=i+1

n

 qij xj,  wi a free variable 

 j

n




1
xj = 1 

 j

n




1
rj xj = r0 

 We solved a specific instance of these formulations for a data set based on the performance of 19 

stocks on the New York Stock exchange (IBM, Xerox, ATT, etc.). These models were solved as 

general nonlinear programs. The fact they were quadratic programs was not exploited. 

 The solution time in seconds for each formulation was: 

Formulation Time in seconds 

1 2.16 

2 1.5 

3 0.82 

Why the dramatic differences in solution time? 

 The advantage of formulation (2) over (1) is relatively obvious. Each function evaluation of the 

objective in (1) requires approximately 2  n  n multiplications (2 multiplications for each of 

approximately n  n terms). For (2), the equivalent figure is about n + n  n/2 multiplications. 

 Formulation (3) has essentially the same number of multiplications as (2). However, about n  n/2 

of them appear in linear constraints. The number of constraints has dramatically increased. However, 

these constraints are linear and the technology for efficiently processing linear constraints is well 

developed. 
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13.9 Cholesky Factorization for Quadratic Programs 
There is another formulation comparable to formulation (3), but even more compact. Given a 

covariance matrix {qij}, one can compute its “square root,” the so-called Cholesky factorization, to 

give a lower triangular matrix {Lij}. The new formulation is then: 

Minimize 
 j

n




1
wj

2
 

subject to 

For each j: 

wj = 
 i=j+1

n

 Lij xj, wj a free variable 

 j

n




1
xj = 1 

 j

n




1
rj xj = r0 

 Notice it is approximately identical in structure to formulation (3) except it has only n rather than 

2n variables in the objective. 

 For the reader comfortable with matrix notation, the transformation is easy to explain. Given the 

covariance matrix Q and a lower triangular matrix L such that: 

L L' = Q, where L' denotes transpose, 

our objective is to: 

Minimize x Q x' = x L L' x' 

If we set w = x L, then our objective is simply: 

Minimize w w' 

subject to 

w = x L. 

 A LINGO model using Cholesky decomposition and applied to our three-asset example is shown 

below: 

MODEL:! Cholesky factorization Portfolio model; 

SETS: 

 ASSET: AMT, RET, CW; 

 COVMAT( ASSET, ASSET): VARIANCE; 

 MAT(ASSET,ASSET)| &1 #GE# &2: L; !Cholesky factor; 

ENDSETS 

DATA: 

   ASSET =    ATT      GMC        USX; 

!Covariance matrix and expected returns; 

VARIANCE = .01080754 .01240721 .01307513 

           .01240721 .05839170 .05542639 

           .01307513 .05542639 .09422681; 

     RET = .0890833  .213667   .234583; 

ENDDATA 

! Minimize variance; 

[VAR] MIN = @SUM( ASSET( I): CW( I) * CW( I)); 
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!  Use exactly 100% of the starting budget; 

[BUDGET] @SUM( ASSET: AMT) = 1; 

! Required wealth at end of period; 

[RETURN] @SUM( ASSET: AMT * RET) > .15; 

! Compute contributions to variance, CW(); 

@FOR( ASSET( J): 

   @FREE( CW( J)); 

   CW( J) = @SUM( MAT( I, J): L( I, J) * AMT( I)); 

    ); 

!Compute the Cholesky factor L, so LL'= VARIANCE; 

@FOR( ASSET( I): 

 @FOR( MAT( I, J)| J #LT# I: 

L(I,J) = ( VARIANCE( I, J) - @SUM( MAT( I, K)| 

          K #LT# J: L( I, K) * L( J, K)))/ L( J, J); 

          ); 

L(I,I) = ( VARIANCE( I, I) - @SUM( MAT( I, K)| 

          K #LT# I: L( I, K) * L( I, K)))^.5; 

          ); 

END 

Part of the solution report is shown below: 

Optimal solution found at step:         4 

Objective value:                0.2241375E-01 

           Variable       Value    Reduced Cost 

          AMT( ATT)   0.5300926       0.0000000 

          AMT( GMC)   0.3564106       0.0000000 

          AMT( USX)   0.1134968       0.4492217E-08 

          RET( ATT)   0.8908330E-01   0.0000000 

          RET( GMC)   0.2136670       0.0000000 

          RET( USX)   0.2345830       0.0000000 

           CW( ATT)   0.1119192       0.0000000 

           CW( GMC)   0.9671834E-01   0.0000000 

           CW( USX)   0.2309568E-01   0.0000000 

VARIANCE( ATT, ATT)   0.1080754E-01   0.0000000 

VARIANCE( ATT, GMC)   0.1240721E-01   0.0000000 

VARIANCE( ATT, USX)   0.1307513E-01   0.0000000 

VARIANCE( GMC, ATT)   0.1240721E-01   0.0000000 

VARIANCE( GMC, GMC)   0.5839170E-01   0.0000000 

VARIANCE( GMC, USX)   0.5542639E-01   0.0000000 

VARIANCE( USX, ATT)   0.1307513E-01   0.0000000 

VARIANCE( USX, GMC)   0.5542639E-01   0.0000000 

VARIANCE( USX, USX)   0.9422681E-01   0.0000000 

       L( ATT, ATT)   0.1039593       0.0000000 

       L( GMC, ATT)   0.1193468       0.0000000 

       L( GMC, GMC)   0.2101144       0.0000000 

       L( USX, ATT)   0.1257716       0.0000000 

       L( USX, GMC)   0.1923522       0.0000000 

       L( USX, USX)   0.2034919       0.0000000 

             Row   Slack or Surplus   Dual Price 

             VAR      0.2241375E-01  -1.000000 

          BUDGET      0.0000000       0.8255034E-02 

          RETURN      0.0000000      -0.3538836 
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13.10 Positive Definiteness Constraints  
              An important feature of a valid covariance matrix is that it must be positive semi-definite. 

Loosely speaking, this means the diagonal of the matrix must be large relative to the off-diagonal 

elements.  More precisely, if Q is a square matrix, e.g., a covariance matrix, then for any vector x, we 

must have, in matrix notation,  x’Qx ≥ 0. In terms of portfolio optimization, if the x vector represents 

the amount invested in a set of assets, and Q is the covariance matrix, then x’Qx is the variance of the 

portfolio and we expect, and in fact require, that this variane be ≥ 0. Now suppose that the Q matrix is 

not given in advance, but rather the the elements of Q are decision variables, and we are constraining 

these elements of the matrix so that Q is positive semi-definite. A mathematical program in which we 

allow such constraints is called a Semi-Definite Program, or SDP for short.  LINGO has a simple 

constraint type to indicate that a matrix Q must be positive semi-definite, namely, @POSD( Q);. 

  To illustrate the usefulness of this capability, suppose that we asked three experts to estimate 

the three covariances between three stocks and we obtained the following “guesstimate” of the 

correlation matrix:  
         1.000000   0.6938961 -0.1097276      

         0.6938961  1.000000   0.7972293 

        -0.1097276  0.7972293  1.000000 ; 

Although not immediately obvious, it happens to be the case that this matrix is not quite positive-semi-

definte, so it is not a valid correlation matrix. So a reasonable thing to try to do is to make minimal 

adjustments to the off-diagonal elements to convert this matrix to a positive semi-definite matrix. The 

following LINGO model witll do this. Notice the following: 1) Because the matrix is symmetric, 

LINGO only requires that you enter the lower triangle of the matrix. 2) The last statement in the model 

is @POSD( QFIT), i.e., we want the fitted matrix to be positive semi-definite, and 3) Our objective is 

to minimize the sum of the squared differences between the original guessed matrix and the fitted 

matrix. 

 
SETS: 

  VEC; 

  MAT( VEC,VEC) | &1 #GE# &2: QINI, QADJ, QFIT; 

ENDSETS 

DATA: 

  VEC = 1..3; 

! Our initial estimate of the correlation matrix, 

    ( May not be positive semi-definite); 

  QINI = 

         1.000000   

         0.6938961  1.000000  

        -0.1097276  0.7972293 1.000000 ; 

ENDDATA 

 

! Minimize the amount of adjustments we have 

 to make to the off-diagonal terms of  

 our initial estimated matrix...; 

  MIN = @SUM( MAT(i,j) | i #GT# j: QADJ(i,j)^2); 

 

! Fitted matrix = initial + adjustment; 

  @FOR( MAT(i,j) | i #GT# j: 

    QFIT(i,j) = QINI(i,j) + QADJ(i,j); 

! Off diagonal adjustments or fitted 

  might be  < 0; 
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  @FREE( QADJ(i,j)); 

  @FREE( QFIT(i,j)); 

       ); 

 

! Diagonal terms stay at 1; 

 @FOR( VEC(i): 

   QFIT(i,i) = QINI(i,i); 

   QADJ(i,i) = 0; 

     ); 

 

! The adusted/fitted matrix must be  

  Positive semi-definite; 

 @POSD( QFIT); 

 

When solved, we get the fitted matrix: 
   
  

       1.000000 

       0.6348391       1.000000 

      -0.0640226       0.7304152        1.000000  

 

Notice that in the fitted matrix, the off-diagonal elements have been moved closer to 0. There are a 

number of other applications of the @POSD( )  or SDP capability. Look at the MODELS library at 

www.lindo.com under the keyword of @POSD. 

 

13.11 Problems 
1. You are considering three stocks, IBM, GM, and Georgia-Pacific (GP), for your stock portfolio. 

The covariance matrix of the yearly percentage returns on these stocks is estimated to be: 

 IBM GM GP 

IBM 10 2.5 1 

GM 2.5 4 1.5 

GP 1 1.5 9 

 Thus, if equal amounts were invested in each, the variance would be proportional to 10 + 4 + 

9 + 2 (2.5 + 1 + 1.5). The predicted yearly percentage returns for IBM, GM, and GP are 9, 6 and 5, 

respectively. Find a minimum variance portfolio of these three stocks for which the yearly return 

is at least 7, at most 80% of the portfolio is invested in IBM, and at least 10% is invested in GP. 

2. Modify your formulation of problem 1 to incorporate the fact that your current portfolio is 50% 

IBM and 50% GP. Further, transaction costs on a buy/sell transaction are 1% of the amount traded. 

http://www.lindo.com/
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3. The manager of an investment fund hypothesizes that three different scenarios might characterize 

the economy one year hence. These scenarios are denoted Green, Yellow and Red and subjective 

probabilities 0.7, 0.1, and 0.2 are associated with them. The manager wishes to decide how a 

model portfolio should be allocated among stocks, bonds, real estate and gold in the face of these 

possible scenarios. His estimated returns in percent per year as a function of asset and scenario are 

given in the table below: 

 Stocks Bonds Real Estate Gold 

Green 9 7 8 -2 

Yellow 1 5 10 12 

Red 10 4 -1 15 

 Formulate and solve the asset allocation problem of minimizing the variance in return subject 

to having an expected return of at least 6.5. 

4. Consider the ATT/GMC/USX portfolio problem discussed earlier. The desired or target rate of 

return in the solved model was 15%. 

a) Suppose we desire a 16% rate of return. Using just the solution report, what can you 

predict about the standard deviation in portfolio return of the new portfolio? 

b) We illustrated the situation where the opportunity to invest money risk-free at 5% per 

year becomes available. That is, this fourth option has zero variance and zero covariance. 

Now, suppose the risk-free rate is 4% per year rather than 5%. As before, there is no limit 

on how much can be invested at 4%. Based on only the solution report available for the 

original version of the problem (where the desired rate of return is 15% per year), discuss 

whether this new option is attractive when the desired return for the portfolio is 15%. 

c) You have $100,000 to invest. What modifications would need to be made to the original 

ATT/GMC/USX model, so the answers in the solution report would come in the 

appropriate units (e.g., no multiplying of the numbers in the solution by 100,000)? 

d) What is the estimated standard deviation in the value of your end-of-period portfolio in 

(c) if invested as the solution recommends? 
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