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16.1 Introduction 
In most decision-making situations, our profits (and losses) are determined not only by our decisions, 

but by the decisions taken by outside forces (e.g., our competitors, the weather, etc.). A useful 

classification is whether the outside force is indifferent or mischievous. We, for example, classify the 

weather as indifferent because its decision is indifferent to our actions, in spite of how we might feel 

during a rainstorm after washing the car and forgetting the umbrella. A competitor, however, generally 

takes into account the likelihood of our taking various decisions and as a result tends to make decisions 

that are mischievous relative to our welfare. In this chapter, we analyze situations involving a 

mischievous outside force. The standard terminology applied to the problem to be considered is game 

theory. Situations in which these problems might arise are in the choice of a marketing or price 

strategy, international affairs, military combat, and many negotiation situations. For example, the 

probability a competitor executes an oil embargo against us probably depends upon whether we have 

elected a strategy of building up a strategic petroleum reserve. Frequently, the essential part of the 

problem is deciding how two or more cooperating parties “split the pie”. That is, allocate costs or 

profits of a joint project. For a thorough introduction to game theory, see Fudenberg and Tirole (1993). 

16.2 Two-Person Games 
In so-called two-person game theory, the key feature is each of the two players must make a crucial 

decision ignorant of the other player’s decision. Only after both players have committed to their 

respective decisions does each player learn of the other player’s decision and each player receives a 

payoff that depends solely on the two decisions. Two-person game theory is further classified 

according to whether the payoffs are constant sum or variable sum. In a constant sum game, the total 

payoff summed over both players is constant. Usually this constant is assumed to be zero, so one 

player’s gain is exactly the other player’s loss. The following example illustrates a constant sum game. 
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 A game is to be played between two players called Blue and Gold. It is a single simultaneous 

move game. Each player must make her single move in ignorance of the other player’s move. Both 

moves are then revealed and then one player pays the other an amount specified by the payoff table 
below: 

Payoff from Blue to Gold 
  Blue’s Move 
  a b 

 a 4 6 

Gold’s Move b 5 8 

 c 3 4 

 Blue must choose one of two moves, (a) or (b), while Gold has a choice among three moves, (a), 

(b), or (c). For example, if Gold chooses move (b) and Blue chooses move (a), then Gold pays Blue 5 

million dollars. If Gold chooses (c) and Blue chooses (a), then Blue pays Gold 3 million dollars. 

16.2.1 The Minimax Strategy 
This game does not have an obvious strategy for either player. If Gold is tempted to make move (b) in 

the hopes of winning the 8 million dollar prize, then Blue will be equally tempted to make move (a), 

so as to win 5 million from Gold. For this example, it is clear each player will want to consider a 

random strategy. Any player who follows a pure strategy of always making the same move is easily 

beaten. Therefore, define: 

BMi = probability Blue makes move i, i = a or b, 

GMi = probability Gold makes move i, i = a, b, or c. 

How should Blue choose the probabilities BMi? Blue might observe that: 

If Gold chooses move (a), my expected loss is: 

 4 BMA  6 BMB. 

If Gold chooses move (b), my expected loss is: 

5 BMA + 8 BMB. 

If Gold chooses move (c), my expected loss is: 

 3 BMA  4 BMB. 

 So, there are three possible expected losses depending upon which decision is made by Gold. If 

Blue is conservative, a reasonable criterion is to choose the BMi, so as to minimize the maximum 

expected loss. This philosophy is called the minimax strategy. Stated another way, Blue wants to 

choose the probabilities BMi, so, no matter what Gold does, Blue’s maximum expected loss is 

minimized. If LB is the maximum expected loss to Blue, the problem can be stated as the LP: 

MIN = LB; 

! Probabilities must sum to 1; 

               BMA      + BMB  = 1; 

! Expected loss if Gold chooses (a); 

     -LB + 4 * BMA  - 6 * BMB <= 0; 

! Expected loss if Gold chooses (b); 

     -LB - 5 * BMA  + 8 * BMB <= 0; 

! Expected loss if Gold chooses (c); 

     -LB + 3 * BMA  - 4 * BMB <= 0; 
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The solution is: 

Optimal solution found at step:         2 

Objective value:                0.2000000 

Variable           Value        Reduced Cost 

      LB       0.2000000           0.0000000 

     BMA       0.6000000           0.0000000 

     BMB       0.4000000           0.0000000 

     Row    Slack or Surplus      Dual Price 

       1       0.2000000            1.000000 

       2       0.0000000          -0.2000000 

       3       0.2000000           0.0000000 

       4       0.0000000           0.3500000 

       5       0.0000000           0.6500000 

 The interpretation is, if Blue chooses move (a) with probability 0.6 and move (b) with probability 

0.4, then Blue’s expected loss is never greater than 0.2, regardless of Gold’s move. 

 If Gold follows a similar argument, but phrases the argument in terms of maximizing the 

minimum expected profit, PG, instead of minimizing maximum loss, then Gold’s problem is: 

MAX = PG; 

! Probabilities sum to 1; 

          GMA     + GMB     + GMC  = 1; 

! Expected profit if Blue chooses (a); 

-PG + 4 * GMA - 5 * GMB + 3 * GMC >= 0;  

! Expected profit if Blue chooses (b); 

-PG - 6 * GMA + 8 * GMB - 4 * GMC >= 0; 

The solution to Gold’s problem is: 

Optimal solution found at step:         1 

Objective value:                0.2000000 

Variable           Value        Reduced Cost 

      PG       0.2000000           0.0000000 

     GMA       0.0000000           0.1999999 

     GMB       0.3500000           0.0000000 

     GMC       0.6500000           0.0000000 

     Row    Slack or Surplus      Dual Price 

       1       0.2000000            1.000000 

       2       0.0000000           0.2000000 

       3       0.0000000          -0.6000000 

       4       0.0000000          -0.4000000 

 The interpretation is, if Gold chooses move (b) with probability 0.35, move (c) with probability 

0.65 and never move (a), then Gold’s expected profit is never less than 0.2. Notice Gold’s lowest 

expected profit equals Blue’s highest expected loss. From Blue’s point of view the expected transfer to 

Gold is at least 0.2. The only possible expected transfer is then 0.2. This means if both players follow 

the random strategies just derived, then on every play of the game there is an expected transfer of 0.2 

units from Blue to Gold. The game is biased in Gold’s favor at the rate of 0.2 million dollars per play. 

The strategy of randomly choosing among alternatives to keep the opponent guessing, is sometimes 

also known as a mixed strategy. 

 If you look closely at the solutions to Blue’s LP and to Gold’s LP, you will note a surprising 

similarity. The dual prices of Blue’s LP equal the probabilities in Gold’s LP and the negatives of 
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Gold’s dual prices equal the probabilities of Blue’s LP. Looking more closely, you can note each LP is 
really the dual of the other one. This is always true for a two-person game of the type just considered 

and mathematicians have long been excited by this fact. 

16.3 Two-Person Non-Constant Sum Games 
There are many situations where the welfare, utility, or profit of one person depends not only on his 

decisions, but also on the decisions of others. A two-person game is a special case of the above in 

which:  

1. there are exactly two players/decision makers,  

2. each must make one decision,  

3. in ignorance of the other’s decision, and  

4. the loss incurred by each is a function of both decisions.  

 A two-person constant sum game (frequently more narrowly called a zero sum game) is the 

special case of the above where:  

(4a) the losses to both are in the same commodity (e.g., dollars) and  

(4b) the total loss is a constant independent of players’ decisions.  

 Thus, in a constant sum game the sole effect of the decisions is to determine how a “constant sized 

pie” is allocated. Ordinary linear programming can be used to solve two-person constant sum games. 

 When (1), (2) and (3) apply, but (4b) does not, then we have a two-person non-constant sum 

game. Ordinary linear programming cannot be used to solve these games. However, closely related 

algorithms, known as linear complementarity algorithms, are commonly applied. Sometimes a 

two-person non-constant sum game is also called a bimatrix game. 

 As an example, consider two firms, each of which is about to introduce an improved version of an 

already popular consumer product. The versions are very similar, so one firm’s profit is very much 

affected by its own advertising decision as well as the decision of its competitor. The major decision 

for each firm is presumed to be simply the level of advertising. Suppose the losses (in millions of 

dollars) as a function of decision are given by Figure 16.1. The example illustrates that each player 

need not have exactly the same kinds of alternatives. 
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Figure 16.1 Two Person, Non-constant Sum Game  
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Negative losses correspond to profits. 

16.3.1 Prisoner’s Dilemma 
This cost matrix has the so-called prisoner’s dilemma cost structure. This name arises from a setting in 

which two accomplices in crime find themselves in separate jail cells. If neither prisoner cooperates 

with the authorities (thus the two cooperate), both will receive a medium punishment. If one of them 

provides evidence against the other, the other will get severe punishment while the one who provides 

evidence will get light punishment, if the other does not provide evidence against the first. If each 

provides evidence against the other, they both receive severe punishment. Clearly, the best thing for 

the two as a group is for the two to cooperate with each other. However, individually there is a strong 

temptation to defect. 

 The prisoner's dilemma is common in practice, especially in advertising. The only way of getting 

to Mackinac Island in northern Michigan is via ferry from Mackinaw City. Three different companies, 

Sheplers, the Arnold Line, and the Star Line operate such ferries. As you approach Mackinaw City by 

car, you may notice up to a mile before the ferry landing, that each company has one or more small 

roadside stands offering to sell ferry tickets for their line. Frequent users of the ferry service proceed 

directly to the well-marked dock area and buy a ticket after parking the car and just before boarding 

the ferry (no cars are allowed on Mackinac Island). No reserved seats are sold, so there is no advantage 

to buying the tickets in advance at the stands. First time visitors, however, are tempted to buy a ticket 

at a company specific stand because the signs suggest that this is the safe thing to do. The "socially" 

most efficient arrangement would be to have no advanced ticket booths. If a company does not have a 

stand, however, while its competitors do, then this company will lose a significant fraction of the first 

time visitor market. 

 The same situation exists with the two firms in our little numerical example. For example, if A 

does not advertise, but B does, then A makes 1 million and B makes 5 million of profit. Total profit 
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would be maximized if neither advertised. However, if either knew the other would not advertise, then 

the one who thought he had such clairvoyance would have a temptation to advertise. 

 Later, it will be useful to have a loss table with all entries strictly positive. The relative 

attractiveness of an alternative is not affected if the same constant is added to all entries. Figure 16.2 

was obtained by adding +6 to every entry in Figure 16.1: 

Figure 16.2 Two Person, Non-constant Sum Game  
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We will henceforth work with the data in Figure 16.2.  

16.3.2 Choosing a Strategy 
Our example illustrates that we might wish our own choice to be:  

i. somewhat unpredictable by our competitor, and  

ii. robust in the sense that, regardless of how unpredictable our competitor is, our expected 

profit is high.  

 Thus, we are lead (again) to the idea of a random or mixed strategy. By making our decision 

random (e.g., by flipping a coin) we tend to satisfy (i). By biasing the coin appropriately, we tend to 

satisfy (ii). 

 For our example, define a1, a2, a3 as the probability A chooses the alternative “No advertise”, 

“Advertise Medium”, and “Advertise High”, respectively. Similarly, b1 and b2 are the probabilities that 

B applies to alternatives “No Advertise” and “Advertise”, respectively. How should firm A choose a1, 

a2, and a3? How should firm B choose b1 and b2? 

 For a bimatrix game, it is difficult to define a solution that is simultaneously optimum for both. 

We can, however, define an equilibrium stable set of strategies. A stable solution has the feature that, 

given B’s choice for b1 and b2, A is not motivated to change his probabilities a1, a2, and a3. Likewise, 

given a1, a2, and a3, B is not motivated to change b1 and b2. Such a solution, where no player is 
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motivated to unilaterally change his or her strategy, is sometimes also known as a Nash equilibrium. 

There may be bimatrix games with several stable solutions. 

 What can we say beforehand about a strategy of A’s that is stable? Some of the ai’s may be zero 

while for others we may have ai > 0. An important observation which is not immediately obvious is the 

following: the expected loss to A of choosing alternative i is the same over all i for which ai > 0. If this 

were not true, then A could reduce his overall expected loss by increasing the probability associated 

with the lower loss alternative. Denote the expected loss to A by vA. Also, the fact that ai = 0 must 

imply the expected loss from choosing i is > vA. These observations imply that, with regard to A’s 

behavior, we must have: 

2b1 + 5b2   vA (with equality if a1 > 0), 

3b1 + 4b2   vA (with equality if a2 > 0), 

 b1 + 5b2   vA (with equality if a3 > 0). 

Symmetric arguments for B imply: 

2a1 + 4a2 + 7a3   vB (with equality if b1 > 0), 

 a1 + 5a2 + 6a3   vB (with equality if b2 > 0). 

We also have the nonnegativity constraints: 

ai  0 and bi  0, for all alternatives i. 

Because the ai and bi are probabilities, we wish to add the constraints a1 + a2 + a3 = 1 and b1 + b2 = 1.  

 If we explicitly add slack (or surplus if you wish) variables, we can write: 

2b1 + 5b2 - slka1 = vA 

3b1 + 4b2 - slka2 = vA 

 b1 + 5b2 - slka3 = vA 

2a1 + 4a2 + 7a3  slkb1 = vB  

a1 + 5a2 + 6a3  slkb2 = vB  

a1 + a2 + a3 = 1  

b1 + b2 = 1  

ai  0, bi  0, slkai  0, and slkbi  0, for all alternatives i. 

slka1* a1 = 0 

slka2* a2 = 0 

slka3* a3 = 0 

slkb1* b1 = 0 

slkb2* b2 = 0  

 The last five constraints are known as the complementarity conditions. The entire model is known 

as a linear complementarity problem. 
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 Rather than use a specialized linear complementarity algorithm, we will simply use the integer 

programming capabilities for LINGO to model the problem as follows: 

MODEL: ! Two person nonconstant sum game.(BIMATRX); 

 SETS: 

   OPTA: PA, SLKA, NOTUA, COSA; 

   OPTB: PB, SLKB, NOTUB, COSB; 

   BXA( OPTB, OPTA): C2A, C2B; 

 ENDSETS 

 DATA: 

 OPTB = BNAD BYAD; 

 OPTA = ANAD AMAD AHAD; 

  C2A =  2    3    1  ! C2A( I, J) = cost to A if B; 

         5    4    5; ! chooses row I, A chooses col J; 

  C2B =  2    4    7  ! C2B( I, J) = cost to B if B; 

         1    5    6; ! chooses row I, A chooses col J; 

 ENDDATA 

!-------------------------------------------------; 

! Conditions for A, for each option J; 

 @FOR( OPTA( J): 

! Set CBSTA= cost of strategy J, if J is used by A; 

   CBSTA = COSA( J) - SLKA( J); 

   COSA( J) = @SUM( OPTB( I): C2A( I, J) * PB( I)); 

! Force SLKA( J) = 0 if strategy J is used; 

   SLKA( J) <= NOTUA( J) * @MAX( OPTB( I): 

     C2A( I, J)); 

! NOTUA( J) = 1 if strategy J is not used; 

   PA( J) <= 1 - NOTUA( J); 

! Either strategy J is used or it is not used; 

   @BIN( NOTUA( J)); 

       ); 

! A must make a decision; 

 @SUM( OPTA( J): PA( J)) = 1; 

! Conditions for B; 

 @FOR( OPTB( I): 

! Set CBSTB = cost of strategy I, if I is used by 

      B; 

   CBSTB =  COSB( I)  - SLKB( I); 

   COSB( I) = @SUM( OPTA( J): C2B( I, J) * PA( J)); 

! Force SLKB( I) = 0 if strategy I is used; 

   SLKB( I) <= NOTUB( I) * @MAX( OPTA( J): 

      C2B( I, J)); 

! NOTUB( I) = 1 if strategy I is not used; 

   PB( I) <= 1 - NOTUB( I); 

! Either strategy I is used or it is not used; 

   @BIN( NOTUB( I)); 

       ); 

!  B must make a decision; 

 @SUM( OPTB( I): PB( I)) = 1; 

  END   
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A solution is: 

    Variable           Value 

       CBSTA        3.666667 

       CBSTB        5.500000 

   PA( AMAD)       0.5000000 

   PA( AHAD)       0.5000000 

 SLKA( ANAD)       0.3333333 

NOTUA( ANAD)        1.000000 

 COSA( ANAD)        4.000000 

 COSA( AMAD)        3.666667 

 COSA( AHAD)        3.666667 

   PB( BNAD)       0.3333333 

   PB( BYAD)       0.6666667 

 COSB( BNAD)        5.500000 

 COSB( BYAD)        5.500000 

 The solution indicates that firm A should not use option 1(No ads) and should randomly choose 

with equal probability between options 2 and 3. Firm B should choose its option 2(Advertise) twice as 

frequently as it chooses its option 1(Do not advertise). 

 The objective function value, reduced costs and dual prices can be disregarded. Using our original 

loss table, we can calculate the following: 

   Weighted Contribution 
Situation  To Total Loss of 

A B Probability A B 

No Ads No Ads 0  1/3 0 0 

No Ads Ads 0  2/3 0 0 

Advertise Medium No Ads 1/2  1/3 (1/6)  (3) (1/6)  (2) 

Advertise Medium Ads 1/2  2/3 (1/3)  (2) (1/3)  (1) 

Advertise High No Ads 1/2  1/3 (1/6)  (5) (1/6)  (1) 

     Advertise High Ads 1/2  2/3 (1/3)  (1) (1/3)  (0) 

   2.3333 0.5 

 Thus, following the randomized strategy suggested, A would have an expected profit of 2.33 

million; whereas, B would have an expected profit of 0.5 million. Contrast this with the fact that, if A 

and B cooperated, they could each have an expected profit of 4 million. 

16.3.3 Bimatrix Games with Several Solutions 
When a nonconstant sum game has multiple or alternative stable solutions, life gets more complicated. 

The essential observation is we must look outside our narrow definition of “stable solution” to decide 

which of the stable solutions, if any, would be selected in reality. 
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 Consider the following nonconstant sum two-person game: 

Figure 16.3 Bimatrix Games 
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As before, the numbers represent losses. 

 First, observe the one solution that is stable according to our definition: (I) Firm A always 

chooses option 1 and Firm B always chooses option 2. Firm A is not motivated to switch to 2 

because its losses would increase to 100 from 10. Similarly, B would not switch to 1 from 2 

because its losses would increase to 200 from 160. The game is symmetric in the players, so 

similar arguments apply to the solution (II): B always chooses 1 and A always chooses 2. 

 Which solution would result in reality? It probably depends upon such things as the relative 

wealth of the two firms. Suppose:  

i. A is the wealthier firm,  

ii. the game is repeated week after week, and  

iii. currently the firms are using solution II.  

 After some very elementary analysis, A concludes it much prefers solution I. To move things 

in this direction, A switches to option 1. Now, it becomes what applied mathematicians call a 

game of “chicken”. Both players are taking punishment at the rate of 200 per week. Either player 

could improve its lot by 200  160 = 40 by unilaterally switching to its option 2. However, its lot 

would be improved a lot more (i.e., 200  10 = 190) if its opponent unilaterally switched. At this 

point, a rational B would probably take a glance at A’s balance sheet and decide B switching to 

option 2 is not such a bad decision. When a game theory problem has multiple solutions, any 

given player would like to choose that stable solution which is best for it. If the player has the 

wherewithal to force such a solution (e.g., because of its financial size), then this solution is 

sometimes called a Stackelberg equilibrium.  

 If it is not clear which firm is wealthier, then the two firms may decide a cooperative solution 

is best (e.g., alternate between solutions I and II in alternate weeks). At this point, however, 

federal antitrust authorities might express a keen interest in this bimatrix game. 
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 We conclude a “stable” solution is stable only in a local sense. When there are multiple stable 

solutions, we should really look at all of them and take into account other considerations in 

addition to the loss matrix. 

16.4 Nonconstant-Sum Games Involving Two or More Players 
The most unrealistic assumption underlying classical two-person constant-sum game theory is the sum 

of the payoffs to all players must sum to zero (actually a constant, without loss of generality). In 

reality, the total benefits are almost never constant. Usually, total benefits increase if the players 

cooperate, so these situations are sometimes called cooperative games. In these nonconstant-sum 

games, the difficulty then becomes one of deciding how these additional benefits due to cooperation 

should be distributed among the players. 

 There are two styles for analyzing nonconstant sum games. If we restrict ourselves to two persons, 

then so-called bimatrix game theory extends the methods for two-person constant sum games to 

nonconstant sum games. If there are three or more players, then n-person game theory can be used in 

selecting a decision strategy. The following example illustrates the essential concepts of n-person 

game theory. 

 Three property owners, A, B, and C, own adjacent lakefront property on a large lake. A piece of 

property on a large lake has higher value if it is protected from wave action by a seawall. A, B, and C 

are each considering building a seawall on their properties. A seawall is cheaper to build on a given 

piece of property if either or both of the neighbors have seawalls. For our example, A and C already 

have expensive buildings on their properties. B does not have buildings and separates A from C (i.e., B 

is between A and C). The net benefits of a seawall for the three owners are summarized below: 

Owners Who Cooperate, Net Benefit to 
i.e., Build While Others Do Not Cooperating Owners 

A alone 1.2 

B alone 0 

C alone 1 

A and B 4 

A and C 3 

B and C 4 

A, B, and C 7 

 Obviously, all three owners should cooperate and build a unified seawall because then their total 

benefits will be maximized. It appears B should be compensated in some manner because he has no 

motivation to build a seawall by himself. Linear programming can provide some help in selecting an 

acceptable allocation of benefits. 
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 Denote by vA, vB, and vC the net benefits, which are to be allocated to owners A, B, and C. No 

owner or set of owners will accept an allocation that is less than that, which they would enjoy if they 

acted alone. Thus, we can conclude: 

vA  1.2 

vB  0 

vC  1 

vA + vB  4 

vA + vC  3 

vB + vC  4 

vA + vB + vC  7 

 That is, any allocation satisfying the above constraints should be self-enforcing. No owner would 

be motivated to not cooperate. He cannot do better by himself. The above constraints describe what is 

called the “core” of the game. Any solution (e.g., vA = 3, vB = 1, vC = 3) satisfying these constraints is 

said to be in the core. 

 Various objective functions might be appended to this set of constraints to give an LP. The 

objective could take into account secondary considerations. For example, we might choose to 

maximize the minimum benefit. The LP in this case is: 

Maximize z 

subject to z  vA; z  vB; z  vC 

vA  1.2 

vC  1 

vA + vB  4 

vA + vC  3 

vA + vB + vC  7 

A solution is vA = vB = vC = 2.3333. 

 Note the core can be empty. That is, there is no feasible solution. This would be true, for example, 

if the value of the coalition A, B, C was 5.4 rather than 7. This situation is rather interesting. Total 

benefits are maximized by everyone cooperating. However, total cooperation is inherently unstable 

when benefits are 5.4. There will always be a pair of players who find it advantageous to form a 

subcoalition and improve their benefits (at the considerable expense of the player left out). As an 

example, suppose the allocations to A, B, and C under full cooperation are 1.2, 2.1, and 2.1, 

respectively. At this point, A would suggest to B the two of them exclude C and cooperate between the 

two of them. A would suggest to B the allocation of 1.8, 2.2, and 1. This is consistent with the fact that 

A and B can achieve a total of 4 when cooperating. At this point, C might suggest to A that the two of 

them cooperate and thereby select an allocation of 1.9, 0, 1.1. This is inconsistent with the fact that A 

and C can achieve a total of 3 when cooperating. At this point, B suggests to C etc. Thus, when the 

core is empty, it may be everyone agrees that full cooperation can be better for everyone. There 

nevertheless must be an enforcement mechanism to prevent “greedy” members from pulling out of the 

coalition. 
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16.4.1 Shapley Value 
Another popular allocation method for cooperative games is the Shapley Value. The rule for the 

Shapley Value allocation is that each player should be awarded his average marginal contribution to 

the coalition if one considers all possible sequences for forming the full coalition. The following table 

illustrates for the previous example: 

                                 Marginal value of player 

Sequence                  A                B                C 

    A B C                  1.2              2.8               3 

    A C B                  1.2              4                  1.8 

    B A C                  4                 0                  3 

    B C A                  3                 0                  4 

    C A B                  2                 4                  1 

    C B A                  3                 3                  1 

            Total:         14.4           13.8              13.8 

            Average:      2.4             2.3                2.3 

Thus, the Shapley value allocates slightly more, 2.4, to Player A in our example. For this example, as 

with most typical cooperative games, the Shapley Value allocation is in the core if the core is non-

empty. 

16.5 The Stable Marriage/Assignment Problem 
The stable marriage problem is the multi-person interpretation of the assignment problem.  Although the 

major application of the stable marriage model is in college admissions and large scale labor markets,  the 

problem historically has been explained as the “marriage” problem of assigning each of n men to exactly 

one of n women, and vice versa.  Instead of there being a single objective function,  each man provides a 

preference ranking of each of the women,  and each woman provides a ranking of each of the men.  An 

assignment is said to be stable if for every man i, and woman j, either: a) man i prefers the woman he 

currently is assigned to over woman j, or b) woman j prefers the man she is currently assigned to over man 

i.  Otherwise, man i and woman  j would be motivated to abandon their current partners and “elope”.  The 

stable marriage assignment method has been used for assigning medical residents and interns to hospitals 

in the U.S. since 1952.  Each year, thousands of prospective interns rank each of the hospitals in which 

they are interested, and each hospital ranks each of the interns in which they are interested.  Then a neutral 

agency, the National Resident Matching Program (NRMP) assigns interns to hospitals using methods 

described below.  A similar system is used in Canada and Scotland.  Norway and Singapore use a similar 

approach to assign students to schools and universities.  Roth (1984) gives a very interesting history of 

how the U.S. medical profession came to use the stable marriage assignment method embodied in NRMP.  

Roth, Sonmez, and Unver(2005) describe the establishment of a system, based on the marriage assignment 

method, for matching kidney donors with people needing kidneys. 

 In any multi-player problem, the following questions should always be asked:  a) Is there always a 

stable assignment or more generally an equilibrium solution?  b) Can there be multiple stable solutions?   

c) If yes, what criterion should we use for choosing among the multiple solutions?  d) Is the solution Pareto 

optimal, i.e., undominated? e) Is our method for solving the problem, in particular how we answer (c),  

incentive compatible?  That is, does the method motivate the players to provide accurate input information, 

e.g., rankings, for our method? 

 We illustrate ideas with the following 3-man, 3-woman example from Gale and Shapley(1962).  A 1 

means most attractive. A 3 means least attractive. 
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  MAN = ADAM  BOB  CHUCK; 

 WOMAN= ALICE BARB CARMEN; 

 ! Men(row) preference for women(col); 

 MPREF = 

          1    2    3  !ADAM; 

          3    1    2  !BOB; 

          2    3    1; !CHUCK; 

 ! Women(col) preference for men(row); 

 WPREF = 

          3    2    1 !ADAM; 

          1    3    2 !BOB; 

          2    1    3;!CHUCK; 

! Thus, Adam's first choice is Alice. 

     Alice's first choice is Bob; 

 We shall see from this example that the answer to question (b) is that, yes, there can be multiple stable 

solutions.  In this example, giving each man his first choice (and incidentally, each woman her third 

choice) is feasible, giving the assignment:  Adam with Alice, Bob with Barb, and Chuck with Carmen.  It 

is stable because no man is motivated to switch.  A second stable solution is possible by giving each 

woman her first choice (and incidentally, each man his third choice), namely:  Adam with Carmen, Bob 

with Alice, and Chuck with Barb.  It is stable because no woman is motivated to switch.  A third, less 

obvious stable solution is to give everyone their second choice: Adam with Barb, Bob with Carmen, and 

Chuck with Alice.  All other assignments are unstable. 

How to solve the problem? 

Gale and Shapley (1962) show that an intuitive iterative courtship type of method can be made into a 

rigorous algorithm for finding a stable assignment.  The algorithm proceeds as follows: 

1) Each man proposes, or is tentatively assigned, to his first choice woman. 

2) If every woman has exactly one man assigned to her, then stop. We have a stable assignment. 

3) Else, each woman who has two or more men assigned to her rejects all but one of the men assigned 

to her, tentatively keeping the one most attractive to her of the men that just proposed to her. 

4) Each man just rejected in (3) proposes/is assigned to the next most attractive woman on his list. 

5) Go to (2). 

 This version of the algorithm will produce the first solution mentioned above in which all men get 

there first choice.  Obviously, there is the female version of this algorithm in which the roles of men and 

woman or exchanged.  That version gives the second solution above.  Gale and Shapley(1962) make the 

following observations:  i) Regarding our question (a) above, this algorithm will always find a stable 

solution;  ii) If both the male and the female versions of the algorithm give the same assignment, then that 

is the unique stable solution;  iii) When men propose first, the solution is optimal for the men in the sense 

that there is no other stable solution in which any man does better.  Similarly, the version in which women 

propose first, results in a solution that is optimal for women.   

 The two Gale/Shapley algorithms can only give a solution in which men are treated very well, or a 

solution in which women are treated very well.  What about a solution in which everyone is treated 

“moderately well”?  Vande Vate(1989) showed that it is possible to formulate the stable marriage 

assignment problem as a linear program.  The key observation is: if we consider any man i and woman j in 
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a stable solution, then one of the following must hold: a) i and j are assigned to each other, or  b) man i is 

assigned to some other woman k whom he prefers to j, or  c) woman j is assigned to some man k whom 

she prefers to i.  If none of (a), (b), and (c) hold,  then i and j both prefer each other to their current mates 

and they are tempted to elope. 

Define the parameters and sets: 

 mprefij  = the preference position of woman j for man i,                                                           

  e.g., if man 2’s first choice is woman 3, then mpref23 =  1,  

 wprefij  = the preference position of man i for woman j,                                                           

  e.g., if woman 3’s second choice is man 1, then wpref13 =  2, 

 SM(i,j)  = the set of women that man i prefers to woman j, 

        =  { k : mprefik < mprefij }, 

 SW(i,j)  = the set of men that woman j prefers to man i, 

       =  { k : mprefkj < mprefij }, 

Define the variables: 

 yij = 1 if man i and woman j are assigned to each other. 

The “no eloping” stability conditions (a), (b), and (c) above correspond to the linear constraints: 

  For all men i and women j: 

 yij + k in SM(i,j)  yik + k in SW(k,j)  ykj. 

 A remaining question is, what objective function should we use? We already saw a solution above in 

which men were treated well but women were treated poorly, and a solution in which women were treated 

well but men were treated poorly.  How about a solution in which minimizes the worst that anyone gets 

treated?  The following LINGO model illustrates. 

! Stable Marriage Assignment(stable_marriage3); 

SETS: 

   MAN: AM; 

 WOMAN: AW; 

 MXW(MAN,WOMAN): MPREF, WPREF, Y, RM, RW; 

ENDSETS 

DATA: 

! Example from Gale and Shapley(1962); 

  MAN = ADAM  BOB  CHUCK; 

 WOMAN= ALICE BARB CARMEN; 

 ! Men(row) preference for women(col); 

 MPREF = 

          1    2    3 !ADAM; 

          3    1    2 !BOB; 

          2    3    1;!CHUCK; 

 ! Women(col) preference for men(row); 

 WPREF = 

          3    2    1 !ADAM; 

          1    3    2 !BOB; 

          2    1    3;!CHUCK; 



498     Chapter 16  Game Theory and Cost Allocation 

 

! Thus, Adam's first choice is Alice. 

     Alice's first choice is Bob; 

! This data set has 3 stable assignments; 

ENDDATA 

! Y(i,j) = 1 if man i is assigned to woman j; 

  

! Each man must be assigned; 

  @FOR(MAN(i): 

    @SUM(WOMAN(j): Y(i,j)) = 1; 

      ); 

! Each woman must be assigned; 

  @FOR(WOMAN(j): 

    @SUM(MAN(i): Y(i,j)) = 1; 

      ); 

 

! Stability conditions: Either man i and woman are 

   assigned to each other, or 

   man i gets a woman k he prefers to j, or 

   woman j, gets a man k she prefers to i;  

  @FOR( MXW(i,j): 

     Y(i,j) 

   + @SUM(WOMAN(k)| MPREF(i,k) #LT# MPREF(i,j): Y(i,k)) 

   + @SUM(  MAN(k)| WPREF(k,j) #LT# WPREF(i,j): Y(k,j)) >= 1 

        ); 

 

! Compute actual assigned rank for each man and woman; 

@FOR( MAN(i): 

  AM(i) = @SUM( WOMAN(k): MPREF(i,k)*Y(i,k)); 

  PWORST >= AM(i); 

    ); 

@FOR(WOMAN(j): 

  AW(j) = @SUM(   MAN(k): WPREF(k,j)*Y(k,j)); 

  PWORST >= AW(j); 

   ); 

   

! Minimize the worst given to anyone; 

  MIN = PWORST; 

 

When solved, we get the solution: 

    
          Variable           Value 

     Y( ADAM, BARB)        1.000000 

    Y( BOB, CARMEN)        1.000000 

   Y( CHUCK, ALICE)        1.000000 

 

 In the “Men first” solution, every woman got her third choice.  In the “Woman first” solution, 

every man got his third choice.  In this solution, the worst anyone gets is their second choice.  In fact, 

everyone gets their second choice.  McVitie and Wilson(1971) present an algorithm for efficiently 

enumerating all stable solutions.   

 For this example, we have an answer to question (d) above.  It is easy to see that each of the three 

solutions is Pareto optimal.  In the “Women first” solution, clearly the women cannot do any better, 
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and the men cannot do any better without hurting one of the women.  Similar comments apply to the 

other two solutions. 

 With regard to the incentive compatibility question, (e) above, Roth, Rothblum, and Vande Vate 

provide a partial answer, namely, if the “Men first” algorithm is used then there is nothing to be gained 

by a man misrepresenting his preferences.  This is somewhat intuitive in that if the “Men first” rule is 

used, then the resulting solution gives each man the best solution possible among all stable solutions.  

We may reasonably restrict ourselves to stable solutions.  Thus,  if some man misrepresents his 

preferences,  this might cause a different stable solution to result in which this man might be treated 

worse, but definitely no better.  Abdulkadiroglu, Pathak, and Roth(2005), mention that New York City,  

when assigning students to highschools, uses a “Students first” variant of the marriage assignment 

algorithm so as to motivate students to state their true preferences among highschools they are 

considering attending. 

16.5.1 The Stable Room-mate Matching Problem 
The stable room-mate problem is the multi-person interpretation of the 2-matching optimization problem.  

A college wants to match incoming freshman, two to a room in a freshman dormitory.  Each student 

provides a ranking of all other potential room-mates.  A matching is stable if there are no two students, i 

and j,  who are not room-mates such that i prefers j to his current room-mate, and j prefers i to his current 

room-mate.  The stable marriage problem can be interpreted as a special case of the room-mate matching 

problem in which people give very unattractive rankings to people of the same sex. 

 In contrast to the stable marriage problem,  there need not be a stable solution to a stable room-mate 

problem.  The following 4-person example due to Gale and Shapley(1962) illustrates a situation with no 

stable matching. 

! Example from Gale and Shapley; 

  PERSON = AL   BOB  CAL DON; 

! Row preference for col; 

  PREF = 

      99  1  2  3 

       2 99  1  3 

       1  2 99  3 

       1  2  3 99; 

 ! E.g., AL  

 ! The 99 is to indicate that a person cannot be 

   matched to himself. 

 Consider, for example, the solution: AL with BOB, and CAL with DON.  It is not stable because 

BOB is matched with his second choice and CAL is matched with his third choice, whereas if BOB and 

CAL got together, BOB would get his first choice and CAL would get his second choice.  That would give 

us the solution BOB with CAL, and AL with DON.  This is solution is not stable,  however, because then 

AL and CAL would discover that they could improve their lot by getting together to give:  AL with CAL, 

and BOB with DON.  This solution is not stable, etc.   In the terminology of game theory,  the marriage 

assignment problem always has a core.  The room-mate matching problem may not have a core. 

 Irving(1985) gives an efficient algorithm for detecting whether a room-mates problem has a stable 

matching, and if yes, finding a stable matching. The room-mates problem can also be solved by 

formulating it as a mathematical program as illustrated by the following  LINGO model for finding a 

stable room-mate matching among 8 potential room-mates.  This example from Irving(1985) has three 

stable matchings.  
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! Stable Roommate Matching(stable_roommate8); 

! Each of 2n people specify a rank, 1, 2,..., 2n-1, for 

  each other person.  We want to pair up the people into 

  a stable set of pairs, i.e., there are no two people  

  i and j who are not paired up, but would prefer to be 

  paired up rather than be paired with their current partner. 

  It may be that there is no such a stable pairing.  This  

  LINGO model will find such a pairing if one exists, and  

  will minimize the worst that any person gets treated under 

  this pairing. 

SETS: 

 PERSON: AP; 

 PXP(PERSON,PERSON): PREF, Y, R, NOSTAB; 

ENDSETS 

DATA: 

! Example from Irving(1985); 

  PERSON = 1..8; 

! Row preference for col; 

 PREF=!1  2  3  4  5  6  7  8; 

      99  1  7  3  2  4  5  6 

       3 99  1  7  6  2  4  5 

       7  3 99  1  5  6  2  4 

       1  7  3 99  4  5  6  2 

       2  4  5  6 99  1  7  3 

       6  2  4  5  3 99  1  7 

       5  6  2  4  7  3 99  1 

       4  5  6  2  1  6  3 99; 

 ! E.g., the first choice of 1 is 2.  The first choice 

   of 8 is 5. 

 ! The 99 is to indicate that a person cannot be 

   matched to himself. 

 ! This data set has 3 stable matchings; 

ENDDATA 

 

! Y(i,j) = 1 if PERSON i and j are matched, for  i < j; 

  

  NP = @SIZE(PERSON); 

! Each person must be assigned; 

  @FOR(PERSON(i): 

    @SUM(PERSON(k)| k #GT# i: Y(i,k))  

  + @SUM(PERSON(k)| k #LT# i: Y(k,i)) = 1; 

      ); 

 

! Turn off the lower diagonal part of Y; 

   @SUM( PXP(i,j)| i #GT# j: Y(i,j)) = 0; 

 

! Enforce monogamy by making the Y(i,j) = 0 or 1; 

   @FOR( PXP(i,j): 

       @BIN(Y(i,j)) 

        ); 

     

! Stability conditions: Either person i and person j 

   are assigned to each other, or 
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   person i gets a person k he prefers to j, or 

   person j gets a person k he prefers to i, or 

   there is no stable solution;  

  @FOR( PXP(i,j)| i #LT# j: 

     Y(i,j) 

    +@SUM(PERSON(k)| k #LT# i #AND# PREF(i,k) #LT# PREF(i,j): Y(k,i)) 

    +@SUM(PERSON(k)| k #GT# i #AND# PREF(i,k) #LT# PREF(i,j): Y(i,k)) 

    +@SUM(PERSON(k)| k #LT# j #AND# PREF(j,k) #LT# PREF(j,i): Y(k,j)) 

    +@SUM(PERSON(k)| k #GT# j #AND# PREF(j,k) #LT# PREF(j,i): Y(j,k)) 

    + NOSTAB(i,j) >= 1 

        ); 

 

! Compute actual assigned rank for each person; 

@FOR( PERSON(i): 

  AP(i) = @SUM( PERSON(k)| i #LT# k: PREF(i,k)*Y(i,k)) 

        + @SUM( PERSON(k)| k #LT# i: PREF(i,k)*Y(k,i)); 

  PWORST >= AP(i); 

    ); 

 

! Compute number of instabilities; 

  NUMUSTAB = @SUM(PXP(i,j): NOSTAB(i,j)); 

! Apply most weight to getting a stable solution; 

  MIN = NP*NP*NUMUSTAB + PWORST; 

 

Notice in the resulting solution below, there is a stable matching, i.e. NUMUSTAB = 0, and, no participant 

received worse than his second choice.      

             Variable           Value 

             NUMUSTAB        0.000000 

             Y( 1, 5)        1.000000 

             Y( 2, 6)        1.000000 

             Y( 3, 7)        1.000000 

             Y( 4, 8)        1.000000 

 

16.6 Should We Behave Non-Optimally to Obtain Information? 
One of the arts of modeling is knowing which details to leave out of the model. Unfortunately, the 

most likely details left out of a model are the things that are difficult to quantify. One kind of 

difficult-to-quantify feature is the value of information. There are a number of situations where, if 

value of information is considered, then one may wish to behave non-optimally, at least in the short 

run.  Three situations to consider are:  1) We would like to gain information about a customer or 

supplier, e.g., a more precise description of the customer’s demand curve or credit-worthiness,  2) We 

do not want to communicate too much information to a competitor, or  3) We want to communicate 

information to a business partner, e.g., a supplier.  

 As an example of (1) suppose we extend credit to some customers.  If our initial credit optimization 

model says “never extend credit to customers with profile X”, then we may nevertheless wish to 

occasionally extend credit to such customers in order to have up-to-date information of the credit 

worthiness of customers with profile X.  In the inventory setting where unsatisfied demand is lost and 

not observed, Ding and Puterman(2002) suggest that it may be worthwhile to stock a little more than 

“optimal” so as to get a better estimate of customer demand. 



502     Chapter 16  Game Theory and Cost Allocation 

 

Regarding (2), we may wish to behave non-optimally so as to not reveal too much information. Any 

good poker player knows that one should occasionally bluff by placing a large bet, even though the 

odds associated with the current hand do not justify a large bet.  If other players know you never bluff, 

then they will drop out early and not give you the chance of winning large bets, any time you make a 

large bet.   Similarly,  there was a rumor at the end of World War II that Britain allowed a bombing 

attack on Coventry on one occasion even though Britain knew in advance of the attack, thanks to its 

code-breaking.  The argument was that if Britain had sent up a large fleet of fighter in advance to meet 

the incoming German bombers, the Germans would have known, earlier than Britain desired that 

Britain had broken the German communications code. 

An example of (3) comes from inventory control. An optimal inventory model may recommend using 

a very large order size. If we use a smaller order size, however, we will be giving more timely 

information to our supplier about retail demand for his product. In between orders, the supplier has no 

additional information about how his product is selling. In the extreme, if we used an order size of 1, 

then the supplier would have very up-to-date information about retail demand and could do better 

planning. 

In probability theory there is a problem class known as the multi-armed bandit problem that is similar 

to case (1).  A decision maker (DM) must decide which one of several slot machines (one armed 

bandits) should be selected for the next bet.  The DM strongly suspects that the expected payoff is 

different for different machines.  From a simple pure optimization perspective, the DM would bet only 

on the machine with the highest expected payoff.  From an information perspective, however, the DM 

wants to scatter the bets a little bit in order to better estimate the expected payoff of each machine.  

This trade-off between optimization vs. experimentation is sometimes called the explore vs. exploit 

decision. 

16.7 Problems 
1. Both Big Blue, Inc. and Golden Apple, Inc. are “market oriented” companies and feel market 

share is everything. The two of them have 100% of the market for a certain industrial product. 

Blue and Gold are now planning the marketing campaigns for the upcoming selling season. Each 

company has three alternative marketing strategies available for the season. Gold’s market share 

as a function of both the Blue and Gold decisions are tabulated below: 

Payment To Blue by Gold as a Function 
of Both Decisions 

  Blue Decision 

  A B C 

 X .4 .8 .6 

Gold Decision Y .3 .7 .4 

 Z .5 .9 .5 

 Both Blue and Gold know the above matrix applies. Each must make their decision before 

learning the decision of the other. There are no other considerations. 

a) What decision do you recommend for Gold? 

b) What decision do you recommend for Blue? 



Game Theory and Cost Allocation  Chapter 16     503 

2. Formulate an LP for finding the optimal policies for Blue and Gold when confronted with the 

following game: 

Payment To Blue By Gold as a Function of 
Both Decisions 

  Blue Decision 

  A B C D 

Gold Decision X 2 2 1 6 

 Y 1 4 5 1 

3. Two competing manufacturing firms are contemplating their advertising options for the upcoming 

season. The profits for each firm as a function of the actions of both firms are shown below. Both 

firms know this table: 

Profit Contributions 
  Fulcher Fasteners 

  Option A Option B Option C 

 Option Y  4  8  6 

Repicky  10  4  6  

Rivets Option X  8  12  10 

  8  2  4  

a) Which pair of actions is most profitable for the pair? 

b) Which pairs of actions are stable? 

c) Presuming side payments are legal, how much would which firm have to pay the other 

firm in order to convince them to stick with the most profitable pair of actions? 

4. The three neighboring communities of Parched, Cactus and Tombstone are located in the desert 

and are analyzing their options for improving their water supplies. An aqueduct to the mountains 

would satisfy all their needs and cost in total $730,000. Alternatively, Parched and Cactus could 

dig and share an artesian well of sufficient capacity, which would cost $580,000. A similar option 

for Cactus and Tombstone would cost $500,000. Parched, Cactus and Tombstone could each 

individually distribute shallow wells over their respective surface areas to satisfy their needs for 

respective costs of $300,000, $350,000 and $250,000. 

 Formulate and solve a simple LP for finding a plausible way of allocating the $730,000 cost 

of an aqueduct among the three communities. 

5. Sportcasters say Team I is out of the running if the number of games already won by I plus the 

number of remaining games for Team I is less than the games already won by the league leader. It 

is frequently the case that a team is mathematically out of the running even before that point is 

reached. By Team I being mathematically out of the running, we mean there is no combination of 

wins and losses for the remaining games in the season such that Team I could end the season 

having won more games than any other team. A third-place team might find itself mathematically 

though not obviously out of the running if the first and second place teams have all their 

remaining games against each other. 

 Formulate a linear program that will not have a feasible solution if Team I is no longer in the 

running. 
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The following variables may be of interest: 

xjk = number of times Team j may beat Team k in the season’s remaining games and Team I 

still win more games than anyone else. 

The following constants should be used: 

Rjk = number of remaining games between Team j and Team k. Note the number of times j 

beats k plus the number of times k beats j must equal Rjk. 

Tk = total number of games won by Team k to date. Thus, the number of games won at 

season’s end by Team k is Tk plus the number of times it beat other teams. 

6. In the 1983 NBA basketball draft, two teams were tied for having the first draft pick, the reason 

being that they had equally dismal records the previous year. The tie was resolved by two flips of 

a coin. Houston was given the opportunity to call the first flip. Houston called it correctly and 

therefore was eligible to call the second flip. Houston also called the second flip correctly and 

thereby won the right to negotiate with the top-ranked college star, Ralph Sampson. Suppose you 

are in a similar two-flip situation. You suspect the special coin used may be biased, but you have 

no idea which way. If you are given the opportunity to call the first flip, should you definitely 

accept, be indifferent, or definitely reject the opportunity (and let the other team call the first flip). 

State your assumptions explicitly. 

7. A recent auction for a farm described it as consisting of two tracts as follows:  

Tract 1:  40 acres, all tillable, good drainage.  

Tract 2: 35 acres, of which 30 acres are tillable, 5 acres containing pasture, drainage ditch and 

small pond.  

 The format of the auction was described as follows. First Tract 1 and Tract 2 will each be 

auctioned individually. Upon completion of bidding on Tract 1 and Tract 2, there will be a 15 

minute intermission. After that period of time, this property will be put together as one tract of 

farmland. There will be a premium added to the total dollar price of Tract 1 and Tract 2. This total 

dollar amount will be the starting price of the 75 acres. If, at that time, no one bids, then the 

property will go to the highest bidders on Tracts 1 and 2. Otherwise, if the bid increases, then it 

will be sold as one.  

 Can you think of some modest changes in the auction procedure that might increase the total 

amount received for the seller? What are some of the game theory issues facing the individual 

bidders in this case? 
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